SITE ENGINEERING REPORT

1 Walton Place \& 80 Prospect Street

Prepared For
Walton Place LLC \& 80 Prospect Street Partners LLC

Prepared by
Redniss \& Mead, Inc.
22 First Street
Stamford, CT
(203) 327-0500

Issued on
July 19, 2022

Table of Contents

Project Description: 4
Existing Conditions: 4
Proposed Conditions: 5
Compliance with Stormwater Management Standards 8
Standard 1: Runoff and Pollutant Reduction 8
Standard 2: Peak Flow Control 8
Standard 3: Construction Erosion and Sediment Control 9
Standard 4: Operation and Maintenance. 9
Standard 5: Stormwater Management Report 9

Appendices

Appendix A: FEMA Flood Insurance Map
USGS Quadrangle Map - Site Vicinity Map
NOAA Atlas 14 Volume 10 - Precipitation Frequency
City of Stamford Rainfall Intensity - Duration Curves
NRCS Websoil Survey

Appendix B: Existing On-Site Drainage Basin Map
Proposed On-Site Drainage Basin Maps
Appendix C: LID Map
Appendix D: Water Quality Volume Calculations
BMP Volume Calculations
72-Hour Drawdown Calculations
Conveyance Calculations
Appendix E: HydroCAD Report
Appendix F: DCIA Tracking Spreadsheet
Appendix G: Operation and Maintenance Agreement

Appendix H: Checklist for Stormwater Management Report

Narrative

Project Description:

The applicant, Walton Place LLC \& 80 Prospect Street Partners LLC, is proposing to construct a 15 -story residential building on 1 Walton Place \& 80 Prospect Street. Other improvements include townhouses, a roof deck, courtyard, amenity space, and associated hardscape \& landscaping. The main portion of the existing church building shall remain and be renovated. The properties total $1.95 \pm$ acres and are currently located within the R-H zoning district. It is proposed to change the zone to RH-D. Reference is made to site drawings prepared by this office, dated July 19, 2022.

Existing Conditions:

The properties are currently developed with a church, retail building, parking lots, walkways and landscaping. The existing landscape includes trees, shrubs, and manicured lawns. Site elevations range from elevation $22 \pm$ on the south side of the property to elevation $30 \pm$ at the northwestern part of the property. The site has slopes ranging from $1-5 \%$. The property does not lie within the drinking water supply watershed or a regulatory $100-$ year floodplain as established by the Federal Emergency Management Agency (FEMA) on "Flood Insurance Rate Maps" (FIRM) for Fairfield County, Community No. 09001C0516G, Panel 516 of 626, effective date July 8, 2013 (Appendix A).

Drainage Patterns \& Conveyance Systems

Under existing conditions, runoff generated from the site either sheet flows into Bedford Street to the west or is tributary to Prospect Street to the southeast. Runoff tributary to Prospect Street either sheet flows off of the property or is collected by on-site catch basins and piped through a City-owned 60 " reinforced concrete pipe. This pipe runs through the site from north to south in a drainage easement. The tributary area of this pipe is approximately 88 acres. Impervious surfaces cover approximately 74% of total site area. Refer to Appendix B for existing and proposed on-site drainage basin maps.

Soils

The USDA Natural Resources Conservation Service's Websoil Survey indicates the soils on the subject parcel to be primarily Urban Land within Hydrologic Soils Group D. Soil testing was performed on-site to identify any subgrade restrictive soil conditions and to confirm the hydrologic soil classification. A total of eight (8) deep test pits were performed. Mottling was observed in two test pits at depths of $52-60$ " below grade. Ledge was encountered in five test pits at depths ranging between $24-81$ " below grade, with the shallowest ledge encountered closer to Bedford Street. Three saturated hydraulic conductivity tests were conducted in areas with substantial depth to restrictive soil conditions to verify that the in-situ soil can adequately infiltrate stormwater. The observed infiltration rates ranged between 14-24" per hour. Test pit and conductivity test results can be reviewed on site plan sheet SE-5. The location of each test is depicted on the Proposed LID Map (Appendix C).

Proposed Conditions:

The project includes the construction of a 15 -story residential building, townhouses, amenity areas, courtyard, and associated driveway, landscaped areas, sidewalks. The existing retail building and the rear portion of the existing church is proposed to be demolished. The project will result in an increase in impervious area of approximately $6,018 \pm$ SF.

City Pipe Relocation

As part of proposed improvements, the existing City-owned 60 " reinforced concrete pipe must be rerouted to make way for the proposed building. Several routes have been vetted, each with their own challenges. The proposed routing depicted on sheet SE-3A relocates the pipe to the east in Prospect Street and reconnects at the intersection of Prospect and Walton Place. This route adds approximately 117LF of pipe length, requires a gas main relocation and significant work within the roadway. The alternate option routes the pipe system underneath the proposed building, as shown on sheet SE-3B. This route adds 83 LF of pipe length and requires no roadway construction. The pipe will transition to a 4 ' x 5 ' box culvert for the section below the building. The crossing is at the thinnest section of building, avoiding column lines with access structures located outside of the building footprint on both ends. The design team has developed a design that displaces the building load away from the pipe. The drainage easement shall be amended in either scenario. This alternate route is being reviewed by the Stamford Engineering Bureau.

Methodology \& General Design Criteria

All drainage systems have been designed for Type III, 24-hour storm events. The project site is south of the Merritt Parkway and therefore has been designed to adequately accommodate peak runoff for all storms up to and including the 50 -year design storm. The 24 -hour design storm rainfall amounts, and distributions were obtained from the latest NOAA Atlas 14 Point Precipitation Frequency Estimates and storm distributions (Appendix A).

Project Classification

The proposed development is classified as a redevelopment project with more than $1 / 2$ an acre of disturbance and directly connected impervious area greater than 40%, therefore must comply with Standards 1 through 5 of the Stamford Drainage Manual. To comply with Standard 1, this project must provide at least $1 / 2$ Water Quality Volume (WQV) via non-structural practices OR infiltration best management practices (BMP's).

Proposed LID Techniques

Low impact development and site planning techniques were used to the maximum extent practicable given the existing constraints of this site. The site is in an urban area with limited space for LID practices due to setback requirements from existing and proposed buildings and existing infrastructure.

LID techniques include development within areas already developed, removing surface parking, limiting the amount of disturbance around the proposed improvements and minimizing impervious surfaces where possible. The limit of disturbance for the proposed development has been set to allow for the proposed
development, while aiming to minimize impact to adjacent trees and vegetation. The section of lawn and trees along Bedford Street shall remain undisturbed.

Proposed Stormwater Treatment Practices

The design approach chosen to satisfy Standard 1 of the Stamford Drainage Manual is to provide the required water quality volume ($1 / 2 \mathrm{WQV}$) via a subsurface infiltration system and two crushed stone reservoir systems located beneath synthetic turf and porous pavers. Each system is described in detail below.

Infiltration \#1 consists of six (6) - 4.5 foot tall Retain-It units located south of the new building near Prospect Street. Stormwater runoff generated from the courtyard roof areas of the new building will be captured and treated in the subsurface infiltration system which will overflow into a meter structure consisting of a low flow orifice and overflow weir. The meter structure outlets into Storm Manhole \#5 before discharging into the relocated 60 " storm pipe.

Stone reservoir system \#1 (SR\#1) is located beneath the synthetic turf in the ground-level courtyard and consists of a 21 " minimum thick layer of crushed stone. Stormwater from a portion of the courtyard is tributary to SR\#1 via sheet flow, and a portion of the existing church roof will be piped through roof leaders into a perforated pipe within the crushed stone system. The bottom of the crushed stone layer will be sloped at 0.5% towards a 6 " perforated PVC pipe which outlets to a metering structure and eventually discharges into Storm Manhole \#5.

Stone reservoir system \#2 (SR\#2) is beneath porous pavers in the drop-off loop off of Walton Place. The system collects runoff from the drop-off loop and nearby sidewalks and consists of a 12 " minimum thick layer of crushed stone. Two trench drains capture overflow from the system and discharge into an existing storm manhole located in the sidewalk on the eastern side of the drop-off loop.

A summary of the Water Quality required and provided by the stormwater practices is provided below:

Standard 1 (Retention and Treatment) Calculations						
Drainage Area ID	Total Area (SF)	Impervious Area $($ SF)	$1 / 2 "$ WQV (CF)	Retention Volume Required	Retention Volume Provided	
Bedford	15,691	7,463	313	N/A	0	
Prospect Bypass	48,975	41,893	1,673	N/A	0	
In\#1	9,314	9,314	369	369	853	
SR\#1	6,716	5,728	229	229	1,051	
SR\#2	4,098	4,098	162	162	871	
TOTAL	$\mathbf{8 4 , 7 9 4}$	$\mathbf{6 8 , 4 9 6}$	$\mathbf{2 , 7 4 5}$	$\mathbf{2 , 7 4 5}$	$\mathbf{2 , 7 7 5}$	

Infiltration BMP's have been designed in accordance with the requirements of the Stamford Stormwater Manual.

Hydrologic Analysis of Peak Rates of Runoff

Hydrologic models have been prepared utilizing the SCS Runoff Curve Number Method from NRCS TR-55 to analyze the pre- and post-development rainfall runoff rates and volumes. Watershed areas, curve numbers (CN), and times of concentration (TC) were calculated for each contributing watershed. A time of concentration (TC) of 5 minutes was assumed for all basins as they are largely impervious with short runoff lengths. The pre-development drainage basin boundaries and the post-development drainage basin boundaries are shown in Appendix B. The results of the HydroCad model used to analyze the pre- and post-development watershed conditions are presented in Appendix E.

A comparison of the pre- and post-development peak discharge rates is provided in the tables below.

Bedford Street Peak Flow Rates			
Storm Event	Existing (cfs)	Proposed (cfs)	Δ (cfs)
1-Year	1.16	0.80	-0.36
2-Year	1.50	1.04	-0.46
5-Year	2.06	1.44	-0.62
10-Year	2.52	1.76	-0.76
25-Year	3.16	2.21	-0.95
50-Year	3.63	2.54	-1.09

Prospect Street Peak Flow Rates			
Storm Event	Existing (cfs)	Proposed (cfs)	Δ (cfs)
1-Year	3.99	3.40	-0.59
2-Year	4.93	4.34	-0.59
5-Year	6.47	5.66	-0.81
10-Year	7.73	7.28	-0.45
25-Year	9.46	9.31	-0.15
50-Year	10.75	10.61	-0.14

Overall Site Peak Flow Rates			
Storm Event	Existing (cfs)	Proposed (cfs)	Δ (cfs)
1-Year	5.14	4.20	-0.94
2-Year	6.43	5.38	-1.05
5-Year	8.53	7.09	-1.44
10-Year	10.25	8.95	-1.30
25-Year	12.61	11.52	-1.09
50-Year	14.38	13.08	-1.30

Comparison of the peak discharge rates for pre- and post-development watershed conditions demonstrates that the peak rate of runoff from the proposed development will be decreased in both basins. Therefore, the proposed development will not adversely impact the downstream or adjacent properties or receiving water bodies or courses.

Compliance with Stormwater Management Standards

The project site will be designed to meet the Stamford Stormwater Management Standards to the maximum extent practicable as summarized below:

Standard 1: Runoff and Pollutant Reduction

A. The runoff and pollutant reduction requirements for this project are to retain $1 / 2$ of the WQV on-site using Non-Structural Practices or Infiltration BMP's. The proposed Stormwater Treatment Practices include a subsurface infiltration system and two crushed stone reservoir systems located beneath synthetic turf and porous pavers. See "Proposed LID \& Stormwater Treatment Practices" for a detailed description of each system, its required WQV and provided storage volume.
B. Not Applicable. Stormwater systems retain $1 / 2 \mathrm{WQV}$ for the site.
C. Land disturbance has been maintained to areas currently developed. With proper sediment and erosion controls and permanent stabilization of surfaces the development will not result in future site erosion.
D. Noted
E. There will not be a parking lot serving six or more parking spaces under proposed improvements. Interior garage drains will be piped to an oil/grit separator and discharge into the sanitary sewer system. Such design shall be prepared by the plumbing engineer prior to a Building permit request.
F. The proposed development is proposed within areas previously developed which will in turn limit the amount of clearing and grading that will be necessary to employ the development while, minimizing the potential impact of erosive soils on the downstream drainage system. Steep slopes, although not significant on this project, are avoided/outside the limits of construction.

Standard 2: Peak Flow Control

A. Stream channel protection is not required for this project as the subject development does not discharge directly or indirectly into a water body or watercourse.
B. The proposed stormwater system is designed to adequately pass flows leading to, from and through it up to and including the 25 -year design storm event as required in Section 3 of the drainage manual. Refer to the HydroCAD model found in Appendix E.
C. The post-development peak flow rates from the 1 -year, 2 -year, 5 -year, 10 -year, 25 -year and 50 -year, 24 hour storms are controlled to the corresponding pre-development peak discharge rates. Reference is made to the HydroCAD report found in Appendix E.
D. All proposed structural BMP's are equipped with a high-bypass "emergency outlet" sized to safely pass the post-development peak runoff from the 100 -year, 24 -hour storm event. Furthermore, the proposed storm pipe connections into the City storm system have adequate capacity to pass the flow tributary to them in the 100 -year storm event. Refer to the pipe conveyance calculations included in Appendix D.
E. Noted.

Standard 3: Construction Erosion and Sediment Control

A. Site plan sheet SE-4 depicts erosion control measures to be implemented to control construction related impacts. Sediment and erosion controls such as silt fencing, stone tracking pads at construction zone entrance/exit points, hay bale \& insert catch basin protection, and tree protection are proposed.

Standard 4: Operation and Maintenance

A. A Standard City of Stamford Drainage Maintenance Agreement will be executed with the Environmental Protection Board. A draft maintenance agreement has been prepared and is included in Appendix G.
B. The construction plans will include notes describing the long-term maintenance requirements for the site-specific drainage system(s) including routine and non-route inspection and maintenance tasks to be undertaken after construction is completed as well as the schedule for implementing these tasks. This information will be added to the plan set prior to filing for a building permit.

Standard 5: Stormwater Management Report

A. This document and its associated appendices serve as the required Stormwater Management Report.
B. (See below)

Based on the above information, the proposed improvements are designed in accordance with the City of Stamford Stormwater Drainage Manual and will not adversely impact adjacent or downstream properties or City-owned drainage facilities.

Appendix A

FEMA Flood Insurance Map
USGS Quadrangle Map - Site Vicinity Map
NOAA Atlas 14 Volume 10 - Precipitation Frequency City of Stamford Rainfall Intensity - Duration Curves
NRCS Websoil Survey

National Flood Hazard Layer FIRMette

Legend

SEE PIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
$\left.\begin{array}{|l|l|}\hline \begin{array}{l|l}\text { SPECIAL FLOOD } \\ \text { HAZARD AREAS }\end{array} & \begin{array}{l}\text { Without Base Flood Elevation (BFE) } \\ \text { Zone A, } V \text {, A99 } \\ \text { With BFE or Depth Zone AE, AO, AH, VE, AR }\end{array} \\ \text { Regulatory Floodway }\end{array}\right]$

B- 20.2 Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation
mu 513 mm Base Flood Elevation Line (BFE)
$工$ Limit of Study
Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
Hydrographic Feature

MAP PANELS

: $: 2$ Digital Data Available
 No Digital Data Available
 Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The baseman shown complies with FEMA's baseman accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on $6 / 14 / 2022$ at 1:25 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: baseman imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

NOAA Atlas 14, Volume 10, Version 3
Location name: Stamford, Connecticut, USA* Latitude: 41.0584°, Longitude: -73.5373 ${ }^{\circ}$ Elevation: $25.97 \mathrm{ft}^{* *}$

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite
NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{gathered} \hline \mathbf{0 . 3 6 5} \\ (0.282-0.464) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 2 5} \\ (0.328-0.541) \end{gathered}$	$\begin{gathered} \mathbf{0 . 5 2 3} \\ (0.402-0.668) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 0 5} \\ (0.462-0.776) \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{0 . 7 1 7} \\ (0.531-0.952) \\ \hline \end{array}$	$\begin{gathered} \hline \mathbf{0 . 8 0 2} \\ (0.582-1.08) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 0.889 \\ (0.627-1.24) \\ \hline \end{array}$	$\begin{gathered} 0.984 \\ (0.662-1.40) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.12 \\ (0.724-1.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.23 \\ (0.775-1.83) \end{gathered}$
10-min	$\begin{gathered} \mathbf{0 . 5 1 7} \\ (0.399-0.658) \end{gathered}$	$\begin{gathered} 0.602 \\ (0.464-0.767) \end{gathered}$	$\begin{gathered} 0.741 \\ (0.569-0.947) \end{gathered}$	$\begin{gathered} \hline 0.856 \\ (0.654-1.10) \end{gathered}$	$\begin{gathered} \hline 1.01 \\ (0.752-1.35) \\ \hline \end{gathered}$	$\begin{gathered} 1.14 \\ (0.824-1.53) \end{gathered}$	$\begin{gathered} 1.26 \\ (0.888-1.75) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.938-1.98) \end{gathered}$	$\begin{gathered} \hline 1.58 \\ (1.03-2.32) \end{gathered}$	$\begin{gathered} \hline 1.74 \\ (1.10-2.59) \end{gathered}$
15-min	$\begin{array}{c\|} \hline \mathbf{0 . 6 0 8} \\ (0.469-0.774) \\ \hline \end{array}$	$\begin{gathered} \hline \mathbf{0 . 7 0 8} \\ (0.546-0.902) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.872 \\ (0.670-1.11) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.01 \\ (0.769-1.29) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.19 \\ (0.885-1.59) \\ \hline \end{array}$	$\begin{gathered} 1.34 \\ (0.969-1.81) \\ \hline \end{gathered}$	$\begin{gathered} 1.48 \\ (1.05-2.06) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.64 \\ (1.10-2.33) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.86 \\ (1.21-2.73) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 0 4} \\ (1.29-3.04) \\ \hline \end{gathered}$
30-min	$\begin{gathered} \mathbf{0 . 8 5 1} \\ (0.656-1.08) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.992 \\ (0.764-1.26) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.22 \\ (0.939-1.56) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.41 \\ (1.08-1.81) \end{gathered}$	$\begin{array}{c\|} \hline 1.68 \\ (1.24-2.22) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.88 \\ (1.36-2.53) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{2 . 0 8} \\ (1.46-2.89) \\ \hline \end{array}$	$\begin{gathered} \mathbf{2 . 3 0} \\ (1.55-3.27) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.60 \\ (1.69-3.81) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 2.84 \\ (1.80-4.23) \\ \hline \end{array}$
60-min	$\begin{gathered} 1.09 \\ (0.843-1.39) \end{gathered}$	$\begin{gathered} \hline \hline 1.27 \\ (0.983-1.62) \\ \hline \end{gathered}$	$\begin{gathered} 1.57 \\ (1.21-2.01) \end{gathered}$	$\begin{gathered} \hline 1.82 \\ (1.39-2.33) \end{gathered}$	$\begin{gathered} \hline 2.16 \\ (1.60-2.86) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 2} \\ (1.75-3.26) \\ \hline \end{gathered}$	$\begin{gathered} 2.68 \\ (1.88-3.72) \\ \hline \end{gathered}$	$\begin{gathered} 2.96 \\ (1.99-4.21) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 3.34 \\ (2.16-4.89) \end{gathered}$	$\begin{gathered} \hline 3.63 \\ (2.30-5.41) \\ \hline \end{gathered}$
2-hr	$\begin{gathered} \hline \hline 1.41 \\ (1.10-1.79) \end{gathered}$	$\begin{gathered} \hline 1.66 \\ (1.29-2.11) \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{2 . 0 7} \\ (1.60-2.63) \end{gathered}$	$\begin{gathered} \hline 2.41 \\ (1.86-3.08) \end{gathered}$	$\begin{gathered} 2.88 \\ (2.15-3.80) \end{gathered}$	$\begin{gathered} 3.24 \\ (2.36-4.34) \end{gathered}$	$\begin{gathered} 3.60 \\ (2.55-4.98) \end{gathered}$	$\begin{gathered} 4.00 \\ (2.70-5.65) \end{gathered}$	$\begin{gathered} \hline \hline 4.56 \\ (2.96-6.63) \end{gathered}$	$\begin{gathered} \hline 5.00 \\ (3.18-7.41) \end{gathered}$
3-hr	$\begin{gathered} 1.63 \\ (1.27-2.05) \end{gathered}$	$\begin{gathered} 1.93 \\ (1.50-2.43) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 2} \\ (1.87-3.05) \end{gathered}$	$\begin{gathered} \hline 2.82 \\ (2.18-3.58) \end{gathered}$	$\begin{gathered} \hline 3.38 \\ (2.52-4.44) \\ \hline \end{gathered}$	$\begin{gathered} 3.80 \\ (2.78-5.09) \end{gathered}$	$\begin{gathered} 4.23 \\ (3.01-5.85) \\ \hline \end{gathered}$	$\begin{gathered} 4.72 \\ (3.19-6.64) \end{gathered}$	$\begin{gathered} \hline 5.40 \\ (3.52-7.83) \end{gathered}$	$\begin{gathered} \hline 5.96 \\ (3.79-8.79) \\ \hline \end{gathered}$
6-hr	$\begin{gathered} \mathbf{2 . 0 5} \\ (1.61-2.57) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 4} \\ (1.92-3.06) \\ \hline \end{gathered}$	$\begin{gathered} 3.08 \\ (2.41-3.87) \\ \hline \end{gathered}$	$\begin{gathered} 3.61 \\ (2.81-4.56) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.34 \\ (3.27-5.69) \\ \hline \end{gathered}$	$\begin{gathered} 4.89 \\ (3.61-6.52) \\ \hline \end{gathered}$	$\begin{gathered} 5.47 \\ (3.92-7.52) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 . 1 2} \\ (4.15-8.56) \\ \hline \end{gathered}$	$\begin{gathered} 7.05 \\ (4.61-10.2) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 7.82 \\ (4.99-11.5) \\ \hline \end{array}$
12-hr	$\begin{gathered} 2.53 \\ (2.00-3.15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.03 \\ (2.39-3.77) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.84 \\ (3.02-4.80) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{4 . 5 2} \\ (3.53-5.66) \\ \hline \end{gathered}$	$\begin{gathered} 5.44 \\ (4.12-7.09) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{6 . 1 4} \\ (4.56-8.14) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.87 \\ (4.96-9.42) \\ \hline \end{array}$	$\begin{gathered} \hline 7.72 \\ (5.26-10.7) \\ \hline \end{gathered}$	$\begin{gathered} 8.95 \\ (5.86-12.8) \\ \hline \end{gathered}$	$\begin{gathered} 9.97 \\ (6.38-14.5) \\ \hline \end{gathered}$
24-hr	$\begin{gathered} \hline 2.97 \\ (2.36-3.66) \end{gathered}$	$\begin{gathered} \hline 3.59 \\ (2.85-4.44) \end{gathered}$	$\begin{gathered} \hline 4.61 \\ (3.65-5.71) \end{gathered}$	$\begin{gathered} 5.45 \\ (4.29-6.79) \end{gathered}$	$\begin{gathered} 6.61 \\ (5.04-8.57) \end{gathered}$	$\begin{gathered} 7.48 \\ (5.59-9.88) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 . 4 0} \\ (6.11-11.5) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 9.49 \\ (6.49-13.1) \\ \hline \end{array}$	$\begin{gathered} 11.1 \\ (7.30-15.8) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 12.5 \\ (8.01-18.0) \\ \hline \end{array}$
2-day	$\begin{gathered} \hline \hline 3.31 \\ (2.65-4.07) \end{gathered}$	$\begin{gathered} \hline \hline 4.08 \\ (3.26-5.01) \end{gathered}$	$\begin{gathered} \hline 5.32 \\ (4.24-6.56) \end{gathered}$	$\begin{gathered} \hline 6.36 \\ (5.04-7.87) \end{gathered}$	$\begin{gathered} \hline 7.78 \\ (5.98-10.0) \end{gathered}$	$\begin{gathered} 8.84 \\ (6.65-11.6) \end{gathered}$	$\begin{gathered} 9.98 \\ (7.32-13.6) \end{gathered}$	$\begin{gathered} 11.4 \\ (7.79-15.6) \end{gathered}$	$\begin{gathered} \hline 13.4 \\ (8.86-19.0) \end{gathered}$	$\begin{gathered} \hline 15.2 \\ (9.81-21.9) \end{gathered}$
3-day	$\begin{gathered} \hline 3.58 \\ (2.88-4.37) \end{gathered}$	$\begin{gathered} \hline 4.42 \\ (3.54-5.40) \end{gathered}$	$\begin{gathered} 5.78 \\ (4.62-7.09) \end{gathered}$	$\begin{gathered} 6.92 \\ (5.50-8.52) \end{gathered}$	$\begin{gathered} \hline 8.48 \\ (6.53-10.9) \\ \hline \end{gathered}$	$\begin{gathered} 9.63 \\ (7.28-12.6) \end{gathered}$	$\begin{gathered} 10.9 \\ (8.01-14.8) \\ \hline \end{gathered}$	$\begin{gathered} 12.4 \\ (8.52-16.9) \\ \hline \end{gathered}$	$\begin{gathered} 14.7 \\ (9.71-20.7) \end{gathered}$	$\begin{gathered} \hline 16.7 \\ (10.8-23.8) \end{gathered}$
4-day	$\begin{gathered} 3.83 \\ (3.09-4.67) \end{gathered}$	$\begin{gathered} \hline 4.71 \\ (3.79-5.75) \end{gathered}$	$\begin{gathered} 6.15 \\ (4.93-7.52) \end{gathered}$	$\begin{gathered} \hline 7.35 \\ (5.86-9.03) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.99 \\ (6.94-11.5) \\ \hline \end{gathered}$	$\begin{gathered} 10.2 \\ (7.73-13.3) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 11.5 \\ (8.49-15.6) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13.1 \\ (9.03-17.9) \\ \hline \end{array}$	$\begin{gathered} 15.5 \\ (10.3-21.8) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 17.6 \\ (11.4-25.1) \\ \hline \end{array}$
7-day	$\begin{gathered} 4.57 \\ (3.70-5.54) \end{gathered}$	$\begin{gathered} 5.53 \\ (4.47-6.70) \end{gathered}$	$\begin{gathered} 7.09 \\ (5.71-8.62) \end{gathered}$	$\begin{gathered} 8.39 \\ (6.72-10.2) \\ \hline \end{gathered}$	$\begin{gathered} 10.2 \\ (7.88-12.9) \end{gathered}$	$\begin{array}{\|c\|} \hline 11.5 \\ (8.73-14.9) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12.9 \\ (9.53-17.4) \\ \hline \end{array}$	$\begin{gathered} 14.6 \\ (10.1-19.8) \\ \hline \end{gathered}$	$\begin{gathered} 17.1 \\ (11.4-23.9) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 19.3 \\ (12.5-27.3) \\ \hline \end{array}$
10-day	$\begin{gathered} 5.29 \\ (4.30-6.39) \\ \hline \end{gathered}$	$\begin{gathered} 6.30 \\ (5.11-7.61) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.94 \\ (6.43-9.63) \\ \hline \end{gathered}$	$\begin{gathered} 9.31 \\ (7.48-11.3) \end{gathered}$	$\begin{gathered} 11.2 \\ (8.69-14.1) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 12.6 \\ (9.57-16.2) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 14.1 \\ (10.4-18.8) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 15.8 \\ (11.0-21.3) \\ \hline \end{array}$	$\begin{gathered} 18.3 \\ (12.2-25.5) \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{2 0 . 4} \\ (13.2-28.9) \\ \hline \end{array}$
20-day	$\begin{gathered} 7.47 \\ (6.11-8.95) \end{gathered}$	$\begin{gathered} 8.60 \\ (7.03-10.3) \end{gathered}$	$\begin{gathered} \hline 10.4 \\ (8.50-12.6) \end{gathered}$	$\begin{gathered} \hline 12.0 \\ (9.69-14.5) \end{gathered}$	$\begin{gathered} 14.1 \\ (11.0-17.6) \end{gathered}$	$\begin{gathered} 15.7 \\ (11.9-19.9) \end{gathered}$	$\begin{gathered} 17.3 \\ (12.7-22.7) \end{gathered}$	$\begin{gathered} 19.1 \\ (13.3-25.6) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 1 . 5} \\ (14.4-29.7) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 3 . 5} \\ (15.3-32.9) \end{gathered}$
30-day	$\begin{gathered} 9.26 \\ (7.61-11.1) \end{gathered}$	$\begin{gathered} \hline 10.5 \\ (8.60-12.5) \end{gathered}$	$\begin{gathered} \hline 12.5 \\ (10.2-15.0) \end{gathered}$	$\begin{gathered} \hline \mathbf{1 4 . 1} \\ (11.5-17.0) \end{gathered}$	$\begin{gathered} 16.4 \\ (12.8-20.4) \\ \hline \end{gathered}$	$\begin{gathered} 18.2 \\ (13.9-22.9) \end{gathered}$	$\begin{gathered} 19.9 \\ (14.6-25.8) \end{gathered}$	$\begin{gathered} \mathbf{2 1 . 7} \\ (15.2-28.9) \end{gathered}$	$\begin{gathered} \mathbf{2 4 . 1} \\ (16.2-33.1) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 5 . 9} \\ (16.9-36.2) \\ \hline \end{gathered}$
45-day	$\begin{gathered} 11.5 \\ (9.46-13.6) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{1 2 . 8} \\ (10.5-15.2) \\ \hline \end{gathered}$	$\begin{gathered} 15.0 \\ (12.3-17.9) \end{gathered}$	$\begin{gathered} 16.8 \\ (13.7-20.1) \end{gathered}$	$\begin{gathered} 19.2 \\ (15.1-23.7) \end{gathered}$	$\begin{gathered} \mathbf{2 1 . 2} \\ (16.2-26.5) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{2 3 . 1} \\ (16.9-29.6) \\ \hline \end{array}$	$\begin{gathered} 24.9 \\ (17.5-33.0) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 7 . 2} \\ (18.3-37.2) \end{gathered}$	$\begin{array}{c\|} \hline 29.0 \\ (18.9-40.3) \\ \hline \end{array}$
60-day	$\begin{gathered} 13.3 \\ (11.0-15.8) \end{gathered}$	$\begin{gathered} 14.7 \\ (12.2-17.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.0 \\ (14.0-20.3) \end{gathered}$	$\begin{gathered} \hline \mathbf{1 8 . 9} \\ (15.5-22.6) \end{gathered}$	$\begin{gathered} \hline 21.6 \\ (16.9-26.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 3 . 6} \\ (18.1-29.5) \end{gathered}$	$\begin{gathered} \mathbf{2 5 . 6} \\ (18.8-32.7) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{2 7 . 5} \\ (19.4-36.4) \end{array}$	$\begin{gathered} \hline \mathbf{2 9 . 9} \\ (20.1-40.7) \end{gathered}$	$\begin{gathered} \hline 31.5 \\ (20.6-43.7) \\ \hline \end{gathered}$

[^0]
PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 41.0584°, Longitude: -73.5373°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
— 100
— 200
— 500
-1000

Duration	
	$\begin{aligned} & \text { — } 2 \text {-day } \\ & \text { — } 3 \text {-day } \\ & \text { — } 4 \text {-day } \\ & \text { - }{ }^{\text {-day }} \\ & \text { 10-day } \\ & \text { 20-day } \\ & \text { — }{ }^{40-d a y ~} \\ & \text { 60-day } \end{aligned}$

NOAA Atlas 14, Volume 10, Version 3
Created (GMT): Tue Jun 14 17:31:03 2022
Back to Top
Maps \& aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center 1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer

Map Unit Legend

Map Unit Symbol			Map Unit Name
Acres in AOI	Percent of AOI		
307	Urban land	6.5	100.0%
Totals for Area of Interest	$\mathbf{6 . 5}$	$\mathbf{1 0 0 . 0 \%}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.
An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
307	Urban land	D	6.5	100.0\%
Totals for Area of Interest			6.5	100.0\%

Rating Options-Hydrologic Soil Group

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Appendix B

Existing On-Site Drainage Basin Map
Proposed On-Site Drainage Basin Maps

Appendix C

LID Review Map

Appendix D

Water Quality Volume Calculations
BMP Volume Calculations
72-Hour Drawdown Calculations
Conveyance Calculations

Water Quality Volume Calculations					
Project: 1 Walton Place \& 80 Prospect Street			Project \#:	5756	Date: 7/19/2022
Location: Stamford, $C T$			By:	$A S$	Checked: $B D H$
Full Site					
	Area=	1.947	acres		
	Impervious Area=	1.572	acres		
	$\mathrm{I}=$	0.808			
	$\mathrm{R}=$	0.777			
	WQV=	0.126	ac. ft. ${ }^{\text {c }}$		
	WQV=	5490.5			
	1/2 WQV=	2745.3			
	WQV PROVIDED=	2775.0			

${ }^{\mathrm{a}} \mathrm{I}=$ Percent Impervious Coverage
${ }^{\mathrm{b}} \mathrm{R}=0.05+0.009(\mathrm{I})$; Volumetric runoff Coefficient, Equation taken from 2004 Connecticut Stormwater Quality Manual section 7.4.1
c WQV=(1"xRxA)/12; Water Quality Volume, Equation taken from 2004 Connecticut Stormwater Quality Manual section 7.4.1
 half of the calculated WQV.

Stage-Area-Storage for Pond 9P: Inf\#1

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
16.25	0	18.90	870
16.30	16	18.95	886
16.35	33	19.00	903
16.40	49	19.05	919
16.45	66	19.10	935
16.50	82	19.15	952
16.55	98	19.20	968
16.60	115	19.25	985
16.65	131	19.30	1,001
16.70	148	19.35	1,017
16.75	164	19.40	1,034
16.80	181	19.45	1,050
16.85	197	19.50	1,067
16.90	213	19.55	1,083
16.95	230	19.60	1,100
17.00	246	19.65	1,116
17.05	263	19.70	1,132
17.10	279	19.75	1,149
17.15	295	19.80	1,165
17.20	312	19.85	1,182
17.25	328	19.90	1,198
17.30	345	19.95	1,214
17.35	361	20.00	1,231
17.40	377	20.05	1,247
17.45	394	20.10	1,264
17.50	410	20.15	1,280
17.55	427	20.20	1,296
17.60	443	20.25	1,313
17.65	460	20.30	1,329
17.70	476	20.35	1,346
17.75	492	20.40	1,362
17.80	509	20.45	1,379
17.85	525	20.50	1,395
17.90	542	20.55	1,411
17.95	558	20.60	1,428
18.00	574	20.65	1,444
18.05	591	20.70	1,461
18.10	607	20.75	1,477
18.15	624	20.80	1,477
18.20	640	20.85	1,477
18.25	656	20.90	1,477
18.30	673	20.95	1,477
18.35	689	21.00	1,477
18.40	706	21.05	1,477
18.45	722	21.10	1,477
18.50	738	21.15	1,477
18.55	755	21.20	1,477
18.60	771	21.25	1,477
18.65	788	21.30	1,477
18.70	804	21.35	1,477
18.75	821	21.40	1,477
18.80	837	WQV Provided:853 CF @ 18.85	
18.85	853		

Stage-Area-Storage for Pond 6P: SR\#1

Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)	Elevation (feet)	$\begin{array}{r} \text { Surface } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Storage (cubic-feet)	
21.60	0	0	22.66	2,144	845	
21.62	286	1	22.68	2,144	862	
21.64	572	5	22.70	2,144	879	
21.66	858	10	22.72	2,144	896	
21.68	1,143	18	22.74	2,144	913	
21.70	1,429	29	22.76	2,144	930	
21.72	1,715	41	22.78	2,144	948	
21.74	2,001	56	22.80	2,144	965	
21.76	2,144	73	22.82	2,144	982	WQV Provided:
21.78	2,144	90	22.84	2,144	999	1,051 CF @ 22.90
21.80	2,144	107	22.86	2,144	1,016	,051 CF @ 22.90
21.82	2,144	124	22.88	2,144	1,033	
21.84	2,144	142	22.90	2,144	1,051	
21.86	2,144	159	22.92	2,144	1,068	
21.88	2,144	176	22.94	2,144	1,085	
21.90	2,144	193	22.96	2,144	1,102	
21.92	2,144	210	22.98	2,144	1,119	
21.94	2,144	227	23.00	2,144	1,136	
21.96	2,144	244	23.02	2,144	1,153	
21.98	2,144	262	23.04	2,144	1,171	
22.00	2,144	279	23.06	2,144	1,188	
22.02	2,144	296	23.08	2,144	1,205	
22.04	2,144	313	23.10	2,144	1,222	
22.06	2,144	330	23.12	2,144	1,239	
22.08	2,144	347	23.14	2,144	1,256	
22.10	2,144	364	23.16	2,144	1,274	
22.12	2,144	382	23.18	2,144	1,291	
22.14	2,144	399	23.20	2,144	1,308	
22.16	2,144	416	23.22	2,144	1,325	
22.18	2,144	433	23.24	2,144	1,342	
22.20	2,144	450	23.26	2,144	1,359	
22.22	2,144	467	23.28	2,144	1,376	
22.24	2,144	485	23.30	2,144	1,394	
22.26	2,144	502	23.32	2,144	1,411	
22.28	2,144	519	23.34	2,144	1,428	
22.30	2,144	536	23.36	2,144	1,445	
22.32	2,144	553	23.38	2,144	1,462	
22.34	2,144	570	23.40	2,144	1,479	
22.36	2,144	587	23.42	2,144	1,497	
22.38	2,144	605	23.44	2,144	1,514	
22.40	2,144	622	23.46	2,144	1,531	
22.42	2,144	639	23.48	2,144	1,548	
22.44	2,144	656	23.50	2,144	1,565	
22.46	2,144	673				
22.48	2,144	690				
22.50	2,144	708				
22.52	2,144	725				
22.54	2,144	742				
22.56	2,144	759				
22.58	2,144	776				
22.60	2,144	793				
22.62	2,144	810				
22.64	2,144	828				

HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 7P: SR\#2

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
21.50	0	22.03	462	22.56	871
21.51	9	22.04	470	22.57	871
21.52	17	22.05	479	22.58	871
21.53	26	22.06	488	22.59	871
21.54	35	22.07	497	22.60	871
21.55	44	22.08	505	22.61	871
21.56	52	22.09	514	22.62	871
21.57	61	22.10	523	22.63	871
21.58	70	22.11	531	22.64	871
21.59	78	22.12	540	22.65	871
21.60	87	22.13	549	22.66	871
21.61	96	22.14	558	22.67	871
21.62	105	22.15	566	22.68	871
21.63	113	22.16	575	22.69	871
21.64	122	22.17	584	22.70	871
21.65	131	22.18	592	22.71	871
21.66	139	22.19	601	22.72	871
21.67	148	22.20	610	22.73	871
21.68	157	22.21	619	22.74	871
21.69	166	22.22	627	22.75	871
21.70	174	22.23	636	22.76	871
21.71	183	22.24	645	22.77	871
21.72	192	22.25	653	22.78	871
21.73	200	22.26	662	22.79	871
21.74	209	22.27	671	22.80	871
21.75	218	22.28	680	22.81	871
21.76	227	22.29	688		
21.77	235	22.30	697		
21.78	244	22.31	706		
21.79	253	22.32	714		
21.80	261	22.33	723		
21.81	270	22.34	732		
21.82	279	22.35	741		
21.83	287	22.36	749		
21.84	296	22.37	758		
21.85	305	22.38	767		
21.86	314	22.39	775		
21.87	322	22.40	784		
21.88	331	22.41	793		
21.89	340	22.42	802		
21.90	348	22.43	810		
21.91	357	22.44	819		
21.92	366	22.45	828		
21.93	375	22.46	836		
21.94	383	22.47	845		
21.95	392	22.48	854		
21.96	401	22.49	862		
21.97	409	22.50	871		
21.98	418	22.51	871		
21.99	427	22.52	871		
22.00	436	22.53	871		
22.01	444	22.54	871		
22.02	453	22.55	871		

WQV Provided:
871 CF @ 22.80

72-HOUR DRAW DOWN CALCULATIONS

| Project: 1 Walton Place \& 80 Prospect Street | Project \#: 5756 | Date: | 8/19/2022 |
| :--- | :--- | :--- | :--- | :--- |
| Location: Stamford, $C T$ | By: \quad JTF | Checked: | BDH |

| INFIL\#1 | | |
| :--- | ---: | :--- | :--- |
| Surface Area of Infiltration System (SA) | 384 | ft^{2} |
| Volume of Storage of Infiltration System (VS) | 1,477 | ft^{3} |
| Infiltration Rate (IR) | 12.00 | $\mathrm{in} / \mathrm{hr}^{\mathrm{c}}$ |
| Theoretical Water Column Height | 46.16 | in^{a} |
| Time of Draw Down | $\mathbf{3 . 8 5}$ | hr $^{\mathrm{b}}$ |

SR\#1		
Surface Area of Infiltration System (SA)	2,144	ft^{2}
Volume of Storage of Infiltration System (VS)	1,565	ft^{3}
Infiltration Rate (IR)	7.19	$\mathrm{in} / \mathrm{hr}^{\mathrm{d}}$
Theoretical Water Column Height	8.76	in^{a}
Time of Draw Down	$\mathbf{1 . 2 2}$	hr $^{\mathrm{b}}$

SR\#2	2,178	ft^{2}
Surface Area of Infiltration System (SA)	871	ft^{3}
Volume of Storage of Infiltration System (VS)	10.81	$\mathrm{in}^{\mathbf{S} / \mathrm{hr}^{\mathrm{e}}}$
Infiltration Rate (IR)	4.80	in^{a}
Theoretical Water Column Height	$\mathbf{0 . 4 4}$	$\mathbf{h r}^{\mathrm{b}}$
Time of Draw Down		

${ }^{\text {a }}$ Theoretical Water Column Height $(\mathrm{WCH})=\mathrm{VS} / \mathrm{SA}^{*} 12$
${ }^{\mathrm{b}}$ Time of Draw Down $=\mathrm{WCH} / \mathrm{IR}$
${ }^{\mathrm{c}}$ Infiltration Rate (IR) Taken From The Results of Hydraulic Conductivity Test \#1 and reduced by a factor of 2
${ }^{d}$ Infiltration Rate (IR) Taken From The Results of Hydraulic Conductivity Test \#2 and reduced by a factor of 2
${ }^{\mathrm{e}}$ Infiltration Rate (IR) Taken From The Results of Hydraulic Conductivity Test \#3 and reduced by a factor of 2

HYDRAULIC DATA FOR RATIONAL METHOD

Project:	1 Walton Pl. \& 80 Prospect St.				Project \#: 5756		Date:	7/22/2022
Location:	Stamford, CT				By:	JTF	Checked:	BDH
100-Year Storm Conveyance Calculations								
Pipe Section	Q in system (cfs)*	Pipe Size (in)	Pipe Length (ft)	Roughness coefficient	Material	Slope (ft/ft)	$\mathrm{Q}_{\text {full }}(\mathrm{cfs})$	$\mathrm{Q}_{\text {system }} / \mathrm{Q}_{\text {full }}(\%)$
MMH\#1 to MH\#5	1.73	12	12	0.011	PVC	0.021	6.12	28.3\%

*100-Year flow rates obtained from HydroCAD Model

Appendix E

HydroCAD Report

$\begin{aligned} & \text { Total Runoff Area }=169,588 \text { sf Runoff Volume }=32,828 \text { cf Average Runoff Depth }=2.32 " \\ & 22.77 \% \text { Pervious }=38,614 \mathrm{sf} \quad 77.23 \% \text { Impervious }=130,974 \mathrm{sf}\end{aligned}$

 Prepared by HP Inc.
HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC Time span= $=0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}, 2401$ points
Runooff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Runoff Area $=22,313$ sf $\quad 49.28 \%$ Impervious Runoff Depth $>3.38^{\prime \prime}$
TC $=5.0$ min $\quad \mathrm{CN}=88.87$ Runoff $=2.06$ cfs 6,292 cf Runoff Area $=62,481$ sf $\quad 82.40 \%$ Impervious Runoff Depth $>4.01^{\prime \prime}$
Tc $=5.0$ min $\quad \mathrm{CN}=94.83$ Runoff $=6.47 \mathrm{cfs} 20,890$ cf Runoff Area $=15,691$ sf 47.56% Impervious Runoff Depth $>3.35^{\prime \prime}$
 Runoff Area= $=88,975$ sf 85.54% Impervious Runoff Depth $>4.07^{\prime \prime}$
$\mathrm{TC}=5.0 \mathrm{~min} \quad \mathrm{CN}=95.40$ Runoff=5.11 cfs 16,630 cf
 Runoff Area= 9,314 sf 100.00% Impervious Runoff Depth $>4.377^{\prime \prime}$

 Inflow $=8.53$ cfs 27,182 cf
Primary $=8.53$ cfs 27,182 of Inflow $=7.09 \mathrm{cfs} 25,376$ cf
Primary $=7.09 \mathrm{cfs} 25,376 \mathrm{cf}$ Inflow $=5.66$ cfs 20,992 of
Primary $=5.66$ cfs 20,992 cf

 ZZOZ/反1/L pəみu! d
 5756 Hydrocad 2022-05-09

5756 Hydrocad 2022-05-09 Type III 24-hr 25-Year Rainfall=6.61"
Printed 7/13/2022
Prepared by HP Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC Page 88

5756 Hydrocad 2022-05-09 Type III 24-hr 25-Year Rainfall=6.61"
Printed $7 / 13 / 2022$ HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC Page 90

$\begin{array}{lrr}\mathbf{5 7 5 6} \text { Hydrocad 2022-05-09 } & \text { Type III 24-hr } 25-\text {-Year Rainfall }=6.61 " \\ \text { Prepared by HP Inc. } & \text { Printed } 7 / 13 / 2022 \\ \text { HydroCAD® 10.10-6a s/n } 08721 \text { © 2020 HydroCAD Software Solutions LLC } & \text { Page } 92\end{array}$

5756 Hydrocad 2022-05-09
Type III 24-hr 25-Year Rainfall=6.61" HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC Page 94

[^1]	$\mathbf{5 7 5 6}$ Hydrocad 2022-05-09	Type III 24-hr $25-$ Year Rainfall=6.61"
Prepared by HP Inc.	Printed $7 / 13 / 2022$	
HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC	Page 96	HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC Page 96

5756 Hydrocad 2022-05-09	Type III $24-h r$	$25-$-Year Rainfall $=6.61 "$
Prepared by HP Inc.	Printed $7 / 13 / 2022$	
HydroCAD® 10.10-6a $\sin 08721$ © 2020 HydroCAD Software Solutions LLC	Page 98	

 LOL əbed
ZZoz/el/ payuld

5756 Hydrocad 2022-05-09

 Prepared by HP Inc. 05721 -2020 HydroCAD Software Solutions LLC 21 © 2020 HydroCAD Software Solutions LLC
-1=Orifice/Grate (Orifice Controls 0.80 cfs @ 5.90 fps$)$
$\mathbf{2}=$ Sharp-Crested Rectangular Weir (Weir Controls $0.19 \mathrm{cfs} @ 0.80 \mathrm{fps}$)
5756 Hydrocad 2022-05-09 $\begin{array}{lr}\text { Prepared by HP Inc. } & \text { Printed } \\ \text { H/13/2022 } \\ \text { HydroCAD® 10.10-6a sin } 08721 \text { © } 2020 \text { HydroCAD Soffware Solutions LLC } & \text { Page 100 }\end{array}$ Summary for Pond 9P: Inf\#1

Routing by Stor-Ind method, Time Span= $0.00-24.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 20.56 ' $@ 12.14$ hrs Surf.Area $=384 \mathrm{sf}$ Storage $=1,415 \mathrm{cf}$
Plug-Flow detention time $=142.9$ min calculated for 4,066 of $(82 \%$ of inflow $)$
Center-of-Mass det. time $=71.1 \min (813.5-742.4)$
$\begin{array}{llll}\text { \#1A } & 16.25^{\prime} & 0 \text { cf } & 24.00^{\circ} \mathrm{W} \times 16.00^{\circ} \mathrm{L} \times 5.17^{\prime} \mathrm{H} \text { Field } \mathrm{A} \\ 1.984 \mathrm{cf} \text { Overall }-1,984 \mathrm{cf} \text { Embedded }\end{array}$
 3 Rows adjusted for 89
1,477 cf Total Available Storage Storage Group A created with Chamber Wizard

Device Routing

$\begin{array}{lllll}\text { \#1 } & \text { Primary } & 18.85^{\prime} & \text { 5.0" Vert. Orifice/Grate } & C=0.600 \text { Limited to weir flow at low head } \\ \text { \#2 } & \text { Primary } & 20.50^{\prime} & \text { 4.0' long Sharp-Crested Rectangular Weir } 2 \text { End Contraction(s) }\end{array}$ Primary OutFlow Max=1.00 cfs @ $12.14 \mathrm{hrs} \mathrm{HW}=20.56$ ' (Free Discharge)
$-1=$ Orifice/Grate (Orifice Controls $0.80 \mathrm{cfs} @ 5.90 \mathrm{fps}$)
$\begin{array}{lrr}\text { 5756 Hydrocad 2022-05-09 } & \text { Type III 24-hr } 25-\text { Year Rainfall }=6.61 " 1 \\ \text { Prepared by HP Inc. } & \text { Printed } 7 / 13 / 2022 \\ \text { HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC } & \text { Page 102 }\end{array}$

5756 Hydrocad 2022-05-09 Type III 24-hr 25-Year Rainfall=6.61"
Prepared by HP Inc.
Printed $7 / 13 / 2022$
Prepared by HP Inc.

5756 Hydrocad 2022-05-09
 Link 1L: Ex Outfall
 Luc

 5756 Hydrocad 2022-05-09
-

 5756 Hydrocad 2022-05-09
5756 Hydrocad 2022-05-09

Appendix F

DCIA Tracking Spreadsheet

Directly Connected Impervious Area Tracking Worksheet City of Stamford Drainage Manual

Note to user: complete all cells of this color only

	Part 1: General Information
Project Name	Walton Place
Project Address	1 Walton Place \& 80 Prospect Street
Project Applicant	Walton Place LLC \& 80 Prospect Street Partners LLC
Date of Submittal	7-19-2022
Tax Account Number	002-6688, 002-6689 \& 004-1560

Part 2: Project Details

1. What type of development is this? (choose from dropdown)
2. What is the total area of the project site?
3. What is the total area of land disturbance for this project?
4. Does project site drain to High Quality Waters, a Direct Waterfront, or within 500 ft . of Tidal Wetlands? (Yes/No)
5. What is the current DCIA for the site?
6. Will the proposed development increase DCIA (without consideration of proposed stormwater management)? (Yes/No)
7. What is the proposed-development total impervious area for the site?

Redevelopment	
84,796	ft^{2}
67,347	ft^{2}
No	ft^{2}
62,478	
68,496	ft^{2}

Part 3: Water Quality Target Total
Does Standard 1 apply based on information above?
Water Quality Volume (WQV)
Standard 1 requirement
Required retention volume
Provided retention volume for proposed development

Yes
5490.5
ft^{3}
Retain 1/2 WQV on-site
2745.3
ft^{3}
$2,775.0$

Part 4: Proposed DCIA Tracking		
Pre-development total impervious area	62,478	ft^{2}
Current DCIA	62,478	ft^{2}
Proposed-development total impervious area	68,496	ft^{2}
Proposed-development DCIA (after stormwater management)	49,356	ft^{2}
Net change in DCIA from pre-development to proposed-development	-13,122	ft^{2}

Part 5: Post-Development (As-Built Certified) DCIA Tracking	
Post-development (per as-built) total impervious area	ft^{2}
Post-development (per as-built) DCIA (after stormwater management)	ft^{2}
Net change in DCIA from pre-development to post-development	ft^{2}

Certification Statement

I hereby certify that the information contained in this worksheet is true and correct.

Engineer's signature 3 3at F6fucad Date 7/19/2022
Engineer's Seal

Appendix G

Operation and Maintenance Agreement
\qquad

AGREEMENT COVENANT

AGREEMENT made this \qquad by and between Walton Place LLC \& 80 Prospect Street Partners LLC and the CITY OF STAMFORD, a municipal corporation lying within the County of Fairfield and State of Connecticut, acting herein by its duly authorized Mayor, Caroline Simmons (hereinafter referred to as the "City"), and the ENVIRONMENTAL PROTECTION BOARD OF THE CITY OF STAMFORD, acting herein by its duly authorized Chairman, Gary H. Stone (hereinafter referred to as the "EPB").

WITNESSETH:

WHEREAS, OWNER has commenced the planning and construction of a 15-story residential building, townhouses, and associated hardscape \& landscaping improvements on a parcel of land owned by them and as more particularly described on Schedule "A", attached hereto and made a part hereof (the "Property").

WHEREAS, certain drainage facilities ("Drainage Facilities"), including but not limited to infiltration systems as more particularly described on Schedule "B" attached (the "Construction Plans") shall be installed in connection with the aforesaid construction and in accordance with the Construction Plans and issued therefore, (the "Permit") and;

WHEREAS, OWNER, the CITY and EPB share a joint concern that the Drainage Facilities be maintained in a functioning condition so as to avoid pollution of surface and groundwaters, flooding and/or improper drainage.

NOW, THEREFORE, in consideration of ten dollars and other good and valuable consideration receipt of which is hereby acknowledged by the OWNER, it is hereby agreed as follows:

1) OWNER shall clean the drainage facilities or cause such facilities to be cleaned by periodic removal of accumulated sediment and debris in a good and workman-like manner, at least two (2) times during every twelve (12) month period, which times shall be in the period between April and June and between October and December and more often as the City may determine to be necessary.
2) OWNER shall sweep, or cause to be swept, garage facilities, driveways and roadway surfaces located on the Property at least once per calendar quarter.
3) OWNER shall utilize only sand or calcium chloride in connection with the de-icing of areas within the Property meaning and intending that road salt (Sodium Chloride) shall not be used for said purpose.
4) OWNER shall repair or replace any defects or defective drainage facilities so as to maintain the drainage facilities, at all times, in a fully functional capacity.
5) OWNER shall file as-built drainage plans with the EPB immediately upon the completion of work. Said plans shall be prepared by a professional engineer/surveyor registered in the state of Connecticut.
6) OWNER grants the CITY and/or EPB, its agents, and employees, the right to enter the Property at all reasonable times upon twentyfour (24) hours notice to the OWNER for the purpose of inspecting the Property to determine if OWNER is complying with the requirements hereunder. A representative of the Owner shall have the right to accompany the City and/or EPB on their inspection of the Property.
7) If, after an inspection is made pursuant to Paragraph Six hereof, the CITY and/or EPB determines that the owner has failed to comply with the aforesaid undertakings, then the CITY and/or EPB shall give written notice of said determination to the then OWNER of the Property which notice shall also specify the said failure. Said notice shall be sent by registered or certified mail to the last known address of said Owner. If the Owner disputes the claim, he shall give written notice thereof to City and/or EPB within ten (10) days of receipt of said notice, and the EPB shall hold a hearing as promptly as possible to decide the merits of the disputed claim. If the claim is not disputed within said ten (10) days, the OWNER shall have thirty (30) days from the receipt of said notice to correct said failure, unless it is impossible to cure said defect within said time, in which case, the necessary repairs shall be immediately commenced and diligently pursued to completion within a reasonable time.
8) If the said failure is not remedied within the time frame herein stated, the CITY and/or EPB may proceed to cure the same and charge the actual cost thereof to the OWNER of the Property.
9) OWNER agrees to reimburse the CITY and/or EPB for reasonable legal fees and court costs if it becomes necessary for the CITY and/or EPB to sue for reimbursement of sums expended by the CITY and/or EPB in performance of OWNER'S obligation.
10) OWNER agrees and covenants to indemnify and save harmless the CITY and the EPB against any and all claims, suits, actions or judgments arising out of the delay in the performance of any of their obligations pursuant to this Agreement.
11) OWNER agrees that this covenant and restriction shall apply to and run with the land. It shall be binding on all future owners, administrators, executors, successors and assigns.
12) The OWNER hereby represents to the CITY and EPB that he/she is the owner, in fee simple, of all of the property described in "Schedule A" attached hereto and made a part hereof.
13) OWNER agrees that this Agreement and restrictive covenant upon execution of the same, shall be recorded on the land records at the OWNER'S expense at the time that a permit is issued for the Property herein and while the OWNER is in title.
14) OWNER agrees not to assert the invalidity of this document.
15) OWNER agrees that nothing herein shall be construed to be a limitation upon the right of the EPB to assert and enforce any rights it may have under federal, state or City statute, ordinance or regulation.
16) This agreement shall be governed by the laws of the State of Connecticut.

IN WITNESS WHEREOF, the said parties hereto have hereunto set their hands and seals, the day and year first above written. WITNESSED:

THE CITY OF STAMFORD

BY:
Caroline Simmons
Its duly authorized Mayor

THE ENVIRONMENTAL PROTECTION BOARD

BY: \qquad
Gary H. Stone
Its duly authorized Chairman

OWNER

BY: \qquad
(Owner's Name)
(Acknowledgement on the Following Page)

STATE OF CONNECTICUT\}

\} ss: STAMFORD Date: COUNTY OF FAIRFIELD \}

Personally appeared Caroline Simmons, Mayor of the City of Stamford, signer and sealer of the foregoing Instrument, and acknowledged the same to be his free act and deed and the free act and deed of said City, before me.

Commissioner of the Superior
Court or Notary Public
STATE OF CONNECTICUT\}
\} ss: STAMFORD Date:
COUNTY OF FAIRFIELD \}
Personally appeared Gary H. Stone, Chairman of the Environmental Protection Board of the City of Stamford, signer and sealer of the foregoing Instrument, and acknowledged the same to be his free act and deed and the free act and deed of said Commission, before me.

Commissioner of the Superior Court or Notary Public

STATE OF CONNECTICUT\}
\} ss: STAMFORD Date:
COUNTY OF FAIRFIELD \}
Personally appeared signer and sealer of the foregoing instrument, and acknowledged the same to be__free act and deed, before me.

Commissioner of the Superior Court or Notary Public

SCHEDULE "A"

SCHEDULE "B"

Appendix H

Checklist for Stormwater Management Report

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189

CHECKLISTS
Project Name:
Walton Place

Project Address
1 Walton Place \& 80 Prospect Street, Stamford, CT
Property Owners)
Walton Place LLC \& 80 Prospect Street Partners LLC
Tax Account Number (s)
s) 002-6688, 002-6689, \& 004-1560

Engineer's Signature \qquad Date: 07/19/2022

All checklists must be completed and submitted. Provide a brief explanation for any items not provided. Check boxes as completed or N/ A as not applicable.

\boldsymbol{V}	Existing Conditions Plan
$\boldsymbol{\sim}$	Stormwater Management Report
$\boldsymbol{\sim}$	Stormwater Management Plan / Construction Plan
	Certificate of Occupancy

Checklist for Existing Conditions Plan

I. General Information

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189

II. Existing Conditions Plan Elements

\checkmark	Show and label all property boundaries with linear bearing / distances and curve information
\checkmark	Required zoning setbacks
\checkmark	Show and label monument information
\checkmark	Show and label at least one permanent benchmark on the parcel with northing, easting and elevation
\checkmark	Label adjacent property ownership information
\checkmark	Existing contours based on NAVD 88 (no exceptions) at 2 foot contour interval or 1 foot contour interval when slope is flatter than 2 percent at a minimum of 20 ft . beyond the property boundaries of the subject parcel
\checkmark	Show spot elevations at low points, high points, and where topography is flatter than 2 percent
\checkmark	All buildings and structures (label current use and finished floor elevations)
\checkmark	All pavement, parking, driveways, property access points
\checkmark	All roadways, streets, and rights-of-way. Label streets as public or private with street name
\checkmark	All patios, decks, walkways, sidewalks, curb ramps (both adjacent to and opposite and existing roadways or intersections)
\checkmark	Show and label (size, material, inverts) all existing utilities (overhead and underground) within the right-of-way and the project site (label ownership) including but not limited to water, gas and electrical services, wells, storm sewers, sanitary sewers and subsurface sewerage disposal systems.
\checkmark	Show and label existing conveyance systems (swales, ditches, storm drains) including dimensions, elevations, sizes, slopes, and direction of flow
\checkmark	Show and label boundaries of all easements, both public and private, with type, owner, and width
\checkmark	Show and label all other existing features and improvements (e.g. light poles, mature trees of $8^{\prime \prime}$ (dbh) diameter or greater, vegetation, walls with top and bottom elevations, fences, pavement markings)

III. Resource Areas

	Show and label limits of inland wetlands, tidal wetlands and any associated setbacks.
\boldsymbol{V}	Show and label existing natural site features including tree canopy, outcroppings, permanent and intermittent watercourses, waterbodies, streams
	Show and label limits of floodplain and floodway along with FIRM references (Community Number, Panel, Suffix, and Date) including any effective Letters of Map Revision/Amendment, zone designation and elevation.
	Show and label any Conservation Easement Areas
	Show and label Connecticut Coastal Jurisdiction Line (CJL)
	Show and label existing steep slopes (25% and greater)

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189

Checklist for Stormwater Management Report

I. Project Report

A. Applicant / Site Information

$\boldsymbol{\nearrow}$	Applicant name, legal address, contact information (email \& phone)
$\boldsymbol{\nearrow}$	Engineers name, legal address, contact information (email \& phone)
$\boldsymbol{\nearrow}$	Site address and legal description
$\boldsymbol{\nearrow}$	Current / proposed zoning and land use
$\boldsymbol{\nearrow}$	Site vicinity map (8.5" $\left.\times 11^{\prime \prime}\right)$

B. Project Description and Purpose

\checkmark Project description including proposed project elements and anticipated construction schedule

C. Existing Conditions Description

$\boldsymbol{\nearrow}$	Site area, ground cover, vegetation, features (roads, buildings, utilities, etc.)
$\boldsymbol{\nearrow}$	Site topography, slopes, drainage patterns, conveyances systems (swales, storm drains, etc.), stormwater discharge locations
	Receiving waterbody information including stormwater impairments and TMDL information (See the most recent State of Connecticut Integrated Water Quality Report)
\boldsymbol{V}	Site soils information including soil types, hydrologic soil group, bedrock / outcroppings, groundwater elevation, significant geologic features
$\boldsymbol{\nearrow}$	Provide NRCS Soils Mapping
$\boldsymbol{\nearrow}$	Resource protection areas (wetlands, streams, lakes, etc.), buffers, floodplains, floodways

D. Summary of Applicable General Design Criteria

$\boldsymbol{\nearrow}$	Methodology, design storm frequency
$\boldsymbol{\nearrow}$	Hydrologic design criteria
$\boldsymbol{\nearrow}$	Hydraulic design criteria
$\boldsymbol{\nearrow}$	Flood hazard areas

Applying under "Lite" Stormwater Management: Skip to Section I
(Refer to Flow Chart on page vii of the City of Stamford Stormwater Drainage Manual)
E. Project Type in Accordance with Standard 1 Definitions

$\boldsymbol{\checkmark}$	Area of disturbance, receiving waterbody classification (High Quality, Tidal Wetlands, Direct Waterfront)
$\boldsymbol{\nearrow}$	Project type (development, redevelopment, linear development)
$\boldsymbol{\nearrow}$	Pollutant reduction standard per flowchart Section 2.4

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189
F. Summary of LID Site Constraints

$\boldsymbol{\checkmark}$	Description of sensitive areas for protection
$\boldsymbol{\checkmark}$	Mature tree inventory, which shall include 8-inch (dbh) diameter trees or greater
$\boldsymbol{\checkmark}$	Steep slopes
$\boldsymbol{\checkmark}$	Ledge and bedrock depth
$\boldsymbol{\checkmark}$	Seasonal high groundwater elevation
$\boldsymbol{\checkmark}$	Pollutant hotspots
$\boldsymbol{\checkmark}$	Summary of infiltration rates

G. Summary of Proposed Stormwater Treatment Practices

$\boldsymbol{\checkmark}$	Proposed LID controls (i.e. minimize impervious, minimize DCIA, minimize disturbance, increase time of concentrations, other LID controls and strategies)
$\boldsymbol{\checkmark}$	Location, size, types
$\boldsymbol{\checkmark}$	Design criteria and references
\boldsymbol{V}	Stormwater treatment practice, drainage area characteristics / details

H. Summary of Compliance with Standards 1

$\boldsymbol{\checkmark}$	Required pollutant reduction criteria
$\boldsymbol{\checkmark}$	Provided pollutant reduction (WQV) by stormwater treatment practice
$\boldsymbol{\checkmark}$	Summary of compliance with Standard 1

	1.	Summary of Compliance with Standards 2, 3, and 4
	\checkmark	Description of proposed stormwater management system
	\checkmark	Pre-development site hydrology with delineation of each watershed area and sub-basin
	\checkmark	Post-development site hydrology with delineation of each watershed area and sub-basin
	\checkmark	Comparison table of pre- and post-development hydrology, peak flow, volume, and percent difference
	\checkmark	Summary table of watershed areas and sub-basin areas, time of concentration and runoff coefficients
N/A		Summary table demonstrating the 2-year, 24 -hour post development peak flow rate is less than or equal to the lowest of either: - The pre-development 1-year, 24-hour storm peak flow rate - 50 percent of the pre-development 2 -year, 24 -hour storm peak flow rate
	\checkmark	Conveyance protection, emergency outlet sizing
	\checkmark	Hydraulic grade line summary and tail water elevation used in analysis
	\checkmark	Construction erosion and sediment control description, Standard 3
	\checkmark	Operation and Maintenance, maintenance tasks and schedule on construction plans per Standard 4

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189
J. Summary of Compliance with Applicable Drainage Facility Design Requirements

$\boldsymbol{\checkmark}$	Description of applicable design requirements and compliance
$\boldsymbol{\checkmark}$	Description of proposed drainage facilities and compliance

K. Stormwater Management Report
\checkmark Signed and stamped by professional engineer licensed in the State of Connecticut
Drainage impact statement in accordance with Standard 5B.
II. Supporting Calculations (as appendix to Project Report)

Applying under "Lite" Stormwater Management: Skip to Section N

L. Water Quality Volume / Water Quality Flow Calculations

$\boldsymbol{\checkmark}$	Calculations demonstrating the total Water Quality Volume generated by the post-development site and the required retention/treatment volume per Standard 1 in cubic feet.
$\boldsymbol{\checkmark}$	Calculations demonstrating the total Water Quality Volume retained/treated by each stormwater treatment practice and the total Water Quality Volume generated by the post-development contributing drainage area to each stormwater treatment practice

M. Stormwater Treatment Practice Sizing Calculations

- Calculations demonstrating how each stormwater treatment practice has been designed and sized in accordance with the Structural Stormwater BMP Design references in Appendix B. Calculations will vary by stormwater treatment practice, but a minimum, applicants shall provide calculations in accordance with design criteria from the Connecticut Stormwater Quality Manual.

N.		Hydrologic and Hydraulic Design Calculations
		Stream channel protection, Standard 2A

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189
O. Hydrologic and Hydraulic Model, Existing and Proposed

$\boldsymbol{\checkmark}$	Drainage routing diagram
$\boldsymbol{\checkmark}$	Summary
$\boldsymbol{\iota}$	Storage pond input

N/A
P. Downstream analysis (Site by site basis as required by the Engineering Bureau)
 Downstream analysis, Standard 2E

II I. Supporting Mapping (as appendix to Project Report)
Q. Pre-Development Drainage Basin Area Mapping

$\boldsymbol{\checkmark}$	$11^{\prime \prime} \times 17^{\prime \prime}$ or $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet size
$\boldsymbol{\checkmark}$	Topography, drainage patterns, drainage area boundaries and sub basins, flow paths, times of concentration
$\boldsymbol{\checkmark}$	Locations of existing stormwater discharges
	Perennial and intermittent streams, wetlands, and floodplain / floodways
$\boldsymbol{\checkmark}$	NRCS soil types, locations, boring locations, infiltration testing locations
$\boldsymbol{\checkmark}$	Vegetation and groundcover
$\boldsymbol{\checkmark}$	Existing roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, decks and other structures
$\boldsymbol{\checkmark}$	Location, size, type of existing structural stormwater controls, facilities and conveyance systems

R. Post-Development Drainage Basin Area Mapping

$\boldsymbol{\checkmark}$	$11^{\prime \prime} \times 17^{\prime \prime}$ or $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet size
$\boldsymbol{\checkmark}$	Topography, drainage patterns, drainage area boundaries and sub basins, flow paths, times of concentration
$\boldsymbol{\checkmark}$	Locations of proposed stormwater discharges
	Perennial and intermittent streams, wetlands, and floodplain / floodways
$\boldsymbol{\checkmark}$	NRCS soil types, locations, boring locations, infiltration testing locations
$\boldsymbol{\checkmark}$	Vegetation, ground cover and proposed limits of clearing/disturbance
$\boldsymbol{\checkmark}$	Proposed, roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, decks and other structures
$\boldsymbol{\checkmark}$	Location, size, type of proposed structural stormwater controls, facilities and conveyance systems

IV. DCI A Tracking Worksheet (as appendix to Project Report)

DCIA Tracking Worksheet (Use form found in Appendix E)

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189

V. Proposed LID Review Map

Applying under "Lite" Stormwater Management - Proposed LID Review Map NOT required.

A.	General
\checkmark	Site address
\checkmark	Applicant name, legal address, contact information
\checkmark	Engineers name, address, contact information
\checkmark	North arrow, bar scale, horizontal and vertical datum
	Drawing scale shall be set at $1^{\prime \prime}=20^{\prime}$ or $1^{\prime \prime}=40^{\prime}$ when possible
\checkmark	Signed and stamped by a Licensed Professional Engineer in the State of Connecticut
\checkmark	$11^{\prime \prime} \times 17^{\prime \prime}$ or $24^{\prime \prime} \times 36$ " sheet size unless otherwise approved
\checkmark	Existing and proposed contours based on NAVD 88 at 2 foot contour interval or 1 foot contour interval when slope is flatter than 2 percent
\checkmark	Locations of existing stormwater discharges
\checkmark	Roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, and decks and other structures
\checkmark	Location, size, ownership of stormwater conveyance systems (swales, pipes, etc.)

B. LID Constraints:

\checkmark	Boring / test pit locations
\checkmark	Infiltration testing locations and results
\checkmark	Vegetation and proposed limits of clearing / disturbance
\checkmark	NRCS soils mapping
\checkmark	Steep slopes
\checkmark	Surface waters / Perennial and intermittent streams
	Resource protection areas and buffers, wetlands, floodplain / floodways
\checkmark	Existing vegetation and mature trees, which shall include 8-inch (dbh) diameter trees or greater
\checkmark	Poor soils (HSG C \& D)
\checkmark	Shallow bedrock / ledge
\checkmark	Seasonal high groundwater elevation
	Other site constraints (e.g. brownfield caps)

C. Proposed Stormwater Treatment Measures:

$\boldsymbol{\checkmark}$	Location, size, type, limits, and WQV provided by each proposed stormwater treatment practices
\boldsymbol{V}	Drainage area to each proposed stormwater treatment practice (total area, impervious area, WQV)

D. Site Summary Table:

$\boldsymbol{\sim}$	Total site area, disturbed area, pre- and post-development impervious areas
$\boldsymbol{\checkmark}$	Required pollutant reduction volume (retention or detention)
$\boldsymbol{\rightharpoonup}$	Provided pollutant reduction volume (retention or detention)

Checklist for Stormwater Management Plan / Construction Plans

A.

\boldsymbol{V}	General
$\boldsymbol{\checkmark}$	Site orientation, address and legal description
$\boldsymbol{\nearrow}$	Engineers name, address, contact information
$\boldsymbol{\checkmark}$	North arrow, bar scale, horizontal and vertical datum
$\boldsymbol{\checkmark}$	Drawing scale shall be set at $1^{\prime \prime}=20^{\prime}$ or $1^{\prime \prime}=40^{\prime}$ when possible
$\boldsymbol{\checkmark}$	Stamped by a Licensed Professional Engineer in the State of Connecticut
$\boldsymbol{\checkmark}$	$24^{\prime \prime} \times 36^{\prime \prime}$ sheet size unless otherwise approved

B. Site Development Plans

$\boldsymbol{\checkmark}$	City of Stamford Standard Notes
$\boldsymbol{\checkmark}$	As required by the Drainage Maintenance Agreement, provide a written narrative describing the nature of the proposed development activity and the program for operation and maintenance of drainage facilities and control measures throughout the life of the project.
$\boldsymbol{\checkmark}$	Existing and proposed contours based on NAVD 88 at 2 foot contour interval or 1 foot contour interval when slope is flatter than 2 percent
$\boldsymbol{\checkmark}$	All required spot elevations to clearly depict positive pitch
$\boldsymbol{\checkmark}$	Top and bottom elevation of all walls
$\boldsymbol{\checkmark}$	Roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, and decks and other structures
$\boldsymbol{\checkmark}$	All utilities and easements
$\boldsymbol{\checkmark}$	Location, size, maintenance access, type of proposed structural stormwater controls and facilities with elevations and inverts
$\boldsymbol{\checkmark}$	Location, size, maintenance access, type of proposed non-structural stormwater controls and facilities with elevations and inverts
$\boldsymbol{\checkmark}$	Location, size, type of proposed stormwater infrastructure, inlets, manholes, infiltration and detentions systems, control structures with elevations and inverts
$\boldsymbol{\checkmark}$	Location, size, ownership of stormwater conveyance systems (swales, pipes, etc.) with elevations and inverts
$\boldsymbol{\checkmark}$	Identify roof leaders, curtain drains and foundation drains with elevations and inverts
$\boldsymbol{\checkmark}$	Proposed water quality treatment systems, size and model type
$\boldsymbol{\checkmark}$	Final stabilization measures which may include slope stabilization

C. Erosion and Sedimentation Control Plan

$\boldsymbol{\checkmark}$	Phasing and schedule
\boldsymbol{V}	Construction access and staging and stock pile areas
$\boldsymbol{\nearrow}$	Operation and maintenance of erosion and sedimentation controls
$\boldsymbol{\nearrow}$	Tree protection
$\boldsymbol{\checkmark}$	Downstream protection such as location of silt fencing
$\boldsymbol{\nearrow}$	Limit of disturbance
$\boldsymbol{\nearrow}$	Construction fencing

City of Stamford
Engineering Bureau
888 Washington Boulevard, 7th Floor Stamford, CT 06901
Phone 203-977-4189
D. Construction Details

$\boldsymbol{\checkmark}$	Standard City of Stamford details
$\boldsymbol{\checkmark}$	Infiltration system details
$\boldsymbol{\checkmark}$	Control structure details
$\boldsymbol{\checkmark}$	Water quality treatment details
$\boldsymbol{\checkmark}$	Infiltration testing results

Checklist for Certificate of Occupancy

	Final Improvement Location Survey
	Stormwater Management Certification Form
	Final DCIA Tracking Worksheet
	Standard City of Stamford Drainage Maintenance Agreement (Agreement Covenant)

Other Certifications at the discretion of the Engineering Bureau and/or EPB

	Wall Certification
	Landscape Certification
	Landscape Maintenance Agreement
	Waiver Covering Storm Sewer Connection
	Waiver Covering Granite Block, Depressed Curb, and Driveway Aprons
	Flood Certification

[^0]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.

[^1]: $\begin{array}{lll}\text { \#1 Primary } & 22.90 & \begin{array}{l}\text { 6.0" Horiz. Orifice/Grate } \mathrm{C}=0.600 \\ \text { Limited to weir flow at low heads }\end{array}\end{array}$

