SITE ENGINEERING REPORT

40 Signal Road Stamford, CT

Prepared For Sound Beach Landing, LLC

Prepared by

Redniss & Mead, Inc. 22 First Street Stamford, CT (203) 327-0500

Issued on December 21, 2022

Revised on January 27, 2023

(Revisions are in bold italics)

Ted Milone, P.E., LEED AP BD+C CT #22563

Land Surveying Civil Engineering Planning & Zoning Consulting Permitting 22 First Street Stamford, CT 06905 203.327.0500 www.rednissmead.com

Table of Contents

Narrative	4
Project Description:	4
Existing Conditions:	4
Proposed Conditions:	5
Compliance with Stormwater Management Standards	10
Standard I: Runoff and Pollutant Reduction	10
Standard 2: Peak Flow Control	10
Standard 3: Construction Erosion and Sediment Control	11
Standard 4: Operation and Maintenance	11
Standard 5: Stormwater Management Report	11
Conclusion:	11
Sanitary Sewer Summary	12

Appendices

<u>Appendix A</u> :	FEMA Flood Insurance Map USGS Quadrangle Map – Site Vicinity Map City of Stamford Rainfall Intensity – Duration Curves NOAA Atlas 14 Volume 10 – Precipitation Frequency NRCS Web Soil Survey
<u>Appendix B</u> :	Existing On-Site Drainage Basin Map Proposed On-Site Drainage Basin Map
<u>Appendix C</u> :	LID Map
<u>Appendix D</u> :	Water Quality Volume Calculations BMP Volume Calculations Drawdown Calculations
<u>Appendix E</u> :	HydroCAD Report
Appendix F:	Draft Operation and Maintenance Agreement
<u>Appendix G:</u>	DCIA Tracking Spreadsheet Checklist for Stormwater Management Report
<u>Appendix H:</u>	Sanitary Sewer Capacity Calculations

Narrative

Project Description:

Sound Beach Landing, LLC, is submitting an application for Subdivision Approval for the property located at 40 Signal Road. The subject property consists of two previously subdivided lots formally know as Tax Account Numbers 002-8017 and 003-1160. For purposes of this study, the existing parcels and proposed parcels have been studied as one entity hereon referred to as "the property" (40 Signal Road).

The 2.3± acre property lies within in the R-20 Zoning District, west of Cummings Point Road at the easterly tip of the unconstructed portion of Thread Needle Lane and south of Signal Road. The site remains serviced by public water and sewers. This Site Engineering Report reflects the Site Civil Plan set (SE-I through SE-6 dated **January 27, 2023**) prepared by Redniss & Mead, Inc.

Existing Conditions:

The property is currently developed with a large office building, driveways, parking lots, a dock & pier, along with other incidental site features. Existing landscaping includes mature trees, gardens with accent plants and shrubs, and manicured lawns. Site elevations range from 3.4 (Mean High Water) abutting the Long Island Sound to 25 at the northwest corner of the property touching Thread Needle Lane. The site primarily consists of moderately flat slopes ranging from 0-5%. The property does not lie within a drinking water supply watershed. The property lies within FEMA flood zones VE-16, Coastal AE-12, AE-12 with a portion within Zone X as shown on the Flood Insurance Rate Map 09001C0519G, effective July 8, 2013.

Drainage Patterns & Conveyance Systems

Existing drainage basins include the "Existing North Basin" and the "Existing South Basin" as depicted on the Existing Drainage Basin Exhibit in <u>Appendix B</u>. Approximately 0.81 acres is tributary to the "Existing North Basin" which is collected in the stormwater conveyance network under the abutting property to the north which discharges directly into the Long Island Sound. The remaining 1.52± acres of the site is tributary to the "Existing South Basin" which flows overland into the Long Island Sound. Although the site ultimately discharges into the Long Island Sound, the North Basin has been studied independently strictly for reporting purposes to understand the effects of the proposed development on the existing stormwater conveyance network to the north.

Soils

The USDA Natural Resources Conservation Service's Web Soil Survey describes the soils within the development area on the property to be primarily Urban Land within Hydrologic Soils Group B. The remaining portion of the site, which is proposed to remain undeveloped, consists of beach sand. Soil testing, consisting of a series of deep test pits, was performed on-site to identify any sub-grade restrictive soil conditions and to confirm the hydrologic soil classification. A total of thirteen (13) deep test pits were

performed. Mottling and ledge were encountered on the property, although groundwater was not encountered. Restrictive layers were observed below the Coastal Jurisdiction Elevation of 5.5 in several test pits. The location of each test is depicted on the Proposed LID Map (<u>Appendix C</u>).

Saturated hydraulic conductivity testing was not required as the USDA Web Soil Survey classified on site soils as HSG B. As such, an infiltration rate of 0.52 inches per hour was used in accordance with Table 5-1 in the City of Stamford Stormwater Drainage Manual.

Proposed Conditions:

The project includes the redevelopment of the site to include four (4) new single-family dwellings, along with driveways, patios, pools, decks, walkways and other incidental site improvements as depicted on the plans. The proposed development also includes a shared driveway which will be 20' wide and provide access to all four lots. This report focuses on two points of concern including direct discharge to the Long Island Sound and discharge to the Long Island Sound via the stormwater conveyance network within the properties to the north as depicted on the Proposed Drainage Basin Exhibit in <u>Appendix B</u>.

Stormwater Management System

The proposed improvements as shown on the associated site plans would result in an increase in impervious coverage of **6,507 SQ.FT**. when compared to that which exists today. The proposed development is classified as a redevelopment project with more than 1/2 an acre of disturbance on a direct waterfront property making it ineligible for a drainage exemption and, therefore, must comply with Standards 1 through 5 of the Stamford Stormwater Drainage Manual. To comply with Standard 1, this project needs to provide 100% Water Quality Volume (WQV) via non-structural practices OR infiltration best management practices (BMP's). The design approach chosen is to provide the required water quality volume (WQV) via infiltration BMP's consisting entirely of permeable paver driveways and patios (see "Proposed Stormwater Treatment Practices"). With respect to Standard 2, no increase is being proposed towards the northern property. A waiver is being requested to increase flow towards the Long Island Sound as the increase towards a large water body will have no impact and will not result in adverse impacts to neighboring properties or City owned infrastructure.

Methodology & General Design Criteria

The peak rates of runoff for all storms up to and including the 50-year design storm are proposed to decrease towards neighboring properties located to the north and west. We are requesting a waiver to allow an increase in runoff towards the Long Island Sound. The peak rates of runoff have been mitigated to the greatest extent practical (see "Hydrologic Analysis of Peak Rates of Runoff"). The stormwater mitigation systems have been designed for Type III, 24-hour storm events with storm rainfall amounts, and distributions obtained from the latest NOAA Atlas 14 Point Precipitation Frequency Estimates and Storm Distributions (<u>Appendix A</u>).

Project Classification

The proposed development is classified as a <u>redevelopment project</u> on a Direct Waterfront parcel with directly connected impervious area less than 40%, therefore must comply with Standards I through 5 of the Stamford Drainage Manual. To comply with Standard I, this project must retain 100% of the Water Quality Volume (WQV) via non-structural practices OR infiltration best management practices (BMP's).

Proposed LID Techniques

Low impact development and site planning techniques were used to the maximum extent practicable given the existing constraints of this site. LID techniques utilized include development within areas already developed, limiting the amount of disturbance around the proposed improvements, and minimizing impervious surfaces where possible. The limit of disturbance for the proposed development has been set to allow for the proposed development, while aiming to minimize impact to adjacent trees and vegetation.

Proposed Stormwater Treatment Practices

The design approach chosen to satisfy Standard I of the Stamford Drainage Manual is to provide the required water quality volume via subsurface infiltration. These systems are described in detail below. Reference is also made to <u>Appendix D</u> which includes information on water quality volumes, BMP volume, and drawdown times. It shall be noted that all permeable paver systems shall be constructed with the same base profile, however, in accordance with the Stamford Drainage Manual, only portions of the system which are at least I' above their respective restrictive soil elevations have been modeled and accounted for in terms of water quality and retention volume provided.

- Lot I Porous Driveway is located north of the proposed residence on Lot I. It will consist of 4" thick open-joint pavers on a 14" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the northern portion of the roof of the associated dwelling as well as the driveway itself totaling 2,281± SQ.FT. of impervious coverage. The BMP is designed to store 166± CU.FT. of stormwater within the 300± SQ.FT. footprint system and drain within 12.8± hours.
- Lot 2 Porous Driveway is located north of the proposed residence on Lot 2. It will consist of 4" thick open-joint pavers on a 14" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the northern portion of the roof of the associated dwelling as well as the driveway itself totaling 2,360± SQ.FT. of impervious coverage. The BMP is designed to store 322± CU.FT. of stormwater within the 650± SQ.FT. footprint system and drain within 11.4± hours.
- Lot 3 Porous Driveway is located north of the proposed residence on Lot 3. It will consist of 4" thick open-joint pavers on a 14" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the northern portion of the roof of the associated dwelling as well as the driveway itself totaling 2,457± SQ.FT. of impervious coverage. The BMP is designed to store 322± CU.FT. of stormwater within the 650± SQ.FT. footprint system and drain within 11.4± hours.

- Lot 4 Porous Driveway is located northwest of the proposed residence on Lot 4. It will consist of 4" thick open-joint pavers on a 14" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the northern portion of the roof of the associated dwelling, the garage roof, and the driveway itself totaling 2,681± SQ.FT. of impervious coverage. The BMP is designed to store 536± CU.FT. of stormwater within the 1,070± SQ.FT. footprint system and drain within 11.6± hours.
- Lot I Permeable Patio is located south of the proposed residence on Lot I. It will consist of 4" thick open-joint pavers on a 12" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the southern portion of the roof of the associated dwelling, the pool, and the patio itself totaling 2,956± SQ.FT. of impervious coverage. The BMP is designed to store 548± CU.FT. of stormwater within the 1,248± SQ.FT. footprint system and drain within 10.1± hours.
- Lot 2 Permeable Patio is located south of the proposed residence on Lot 2. It will consist of 4" thick open-joint pavers on a 12" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the southern portion of the roof of the associated dwelling, the pool, and the patio itself totaling 2,956± SQ.FT. of impervious coverage. The BMP is designed to store 557± CU.FT. of stormwater within the 1,265± SQ.FT. footprint system and drain within 10.2± hours.
- Lot 3 Permeable Patio is located south of the proposed residence on Lot 3. It will consist of 4" thick open-joint pavers on a 12" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the southern portion of the roof of the associated dwelling, the pool, and the patio itself totaling 2,956± SQ.FT. of impervious coverage. The BMP is designed to store 557± CU.FT. of stormwater within the 1,265± SQ.FT. footprint system and drain within 10.2± hours.
- Lot 4 Permeable Patio is located south of the proposed residence on Lot 4. It will consist of 4" thick open-joint pavers on a 12" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the southern portion of the roof of the associated dwelling, the pool, and the patio itself totaling 3,073± SQ.FT. of impervious coverage. The BMP is designed to store 458± CU.FT. of stormwater within the 1,086± SQ.FT. footprint system and drain within 9.7± hours.
- Right-of-Way (R.O.W.) Porous Driveway I is located in the western side of the proposed common driveway. It will consist of 4" thick open-joint pavers on a 14" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the utility pads, walks, and walls in the right-of-way as well as the driveway itself totaling 2,735± SQ.FT. of impervious coverage. The BMP is designed to store 1,370± CU.FT. of stormwater within the 2,417± SQ.FT. footprint system and drain within 13.1± hours.
- Right-of-Way (R.O.W.) Porous Driveway 2 is located in the center of the proposed common driveway. It will consist of 4" thick open-joint pavers on a 14" deep stone base and will collect, treat, and infiltrate stormwater runoff generated from the walks and walls in the right-of-way as well as the driveway itself totaling 3,835± SQ.FT. of impervious coverage. The BMP is designed to store 634± CU.FT. of stormwater within the 1,118± SQ.FT. footprint system and drain within 13.1± hours.

A summary of the Water Quality required and provided by the stormwater practice is provided below:

	Standard I (Retention and Treatment) Calculations								
Drainage Area ID	Description	Total Area (SF)	Impervious Area (SF)	WQV Required (CF)	Retention Volume Provided (CF)				
Lot I Porous Driveway (IPD)	Lot I Roof & Driveway	2,664	2,281	182.2	166				
Lot 2 Porous Driveway (2PD)	Lot 2 Roof & Driveway	2,875	2,360	189.0	322				
Lot 3 Porous Driveway (3PD)	Lot 3 Roof & Driveway	3,030	2,457	196.9	322				
Lot 4 Porous Driveway (4PD)	Lot 4 Roof & Driveway	2,985	2,681	213.5	536				
Lot I Permeable Patio (IPP)	Lot I Roof, Pool & Patio	2,956	2,956	234.0	548				
Lot 2 Permeable Patio (2PP)	Lot 2 Roof, Pool & Patio	2,956	2,956	234.0	557				
Lot 3 Permeable Patio (3PP)	Lot 3 Roof, Pool & Patio	2,956	2,956	234.0	557				
Lot 4 Permeable Patio (4PP)	Lot 4 Roof, Pool & Patio	3,073	3,073	243.3	458				
R.O.W. Porous Driveway I (RPD1)	R.O.W. Improvements	3,517	2,735	219.8	1370				
R.O.W. Porous Driveway 2 (RPD2)	R.O.W. Improvements	5,029	3,835	308.6	634				
North Bypass (NB)	R.O.W. Areas Captured by Off-Site Area Drains	3,209	270	33.7	-				
South Bypass (SB)	Remaining Site	66,354	5,210	667.2	-				
TOTAL		101,604	33,770	2,956	5,470				

Hydrologic Analysis of Peak Rates of Runoff

Hydrologic models have been prepared utilizing the SCS Runoff Curve Number Method from NRCS TR-55 to analyze the pre- and post-development rainfall runoff rates and volumes. Watershed areas, curve numbers (CN), and times of concentration (TC) were calculated for each contributing watershed. The pre-development drainage basin boundaries and the post-development drainage basin boundaries are shown in <u>Appendix B</u>. The results of the HydroCad model used to analyze the pre- and post-development watershed conditions are presented in <u>Appendix E</u>. *A comparison of the pre- and post-development peak discharge rates is provided in the tables below.*

Links E-SS & P-SS	Storm Sewer Peak Flow (cfs)					
Return Period (years)	Ex (E-SS)	Pr (P-SS)	Change	% Change		
I	1.30	0.03	-1.27	-97.7%		
2	1.79	0.05	-1.74	-97.2%		
5	2.65	0.29	-2.36	-89.1%		
10	3.38	0.64	-2.74	-81.1%		
25	4.38	0.91	-3.47	-79.2%		
50	5.13	I.07	-4.06	-79.1%		

Links E-LIS & P-LIS	Long Island Sound Peak Flow (cfs)					
Return Period (years)	Ex (E-LIS)	Pr (P-LIS)	Change	% Change		
I	1.44	0.79	-0.65	-45.1%		
2	2.16	1.51	-0.65	-30.1%		
5	3.45	3.99	0.54	15.7%		
10	4.58	6.29	1.71	37.3%		
25	6.22	8.62	2.40	38.6%		
50	7.46	10.32	2.86	38.3%		

Comparison of the peak discharge rates for pre- and post-development watershed conditions demonstrates that the peak rate of runoff from the proposed development towards the northerly property (North Basin) will be decreased from pre-development conditions for all storm events up to and including the 50-year storm. The overall development will decrease the peak rates of runoff for the 1 and 2-year storm events. A waiver is being requested to increase flow towards the Long Island Sound as an increase to a large body of water will not have an impact and will not result in adverse impacts to neighboring properties or City-owned infrastructure. As such, the proposed development will not adversely impact adjacent or downstream properties or City-owned drainage facilities.

Compliance with Stormwater Management Standards

The project site will be designed to meet the Stamford Stormwater Management Standards to the maximum extent practicable as summarized below:

Standard I: Runoff and Pollutant Reduction

- A. The runoff and pollutant reduction requirements for this project are to retain 100% of the WQV on-site using Non-Structural Practices or Infiltration BMP's. The proposed Stormwater Treatment Practice (subsurface infiltration) stores more than the required WQV. See "Proposed Conditions" for a detailed description of the system, its required WQV and provided storage volume.
- B. Not Applicable. Stormwater systems retain 100% of WQV.
- C. The proposed development has been designed to minimize site disturbance and overall impact on the site by limiting the footprint of construction activities. To prevent impacts to the Long Island Sound, it is proposed to delineate all construction activities with silt fence and install an anti-tracking pad at the construction entrance to prevent polluted runoff from flowing into the Sound.
- D. Noted
- E. Not required as the development does not contain a parking lot that serves six or more parking spaces.
- F. The development considers non-structural practices such as preserving natural areas (beaches), avoiding disturbance on steep slopes along Dolphin Cove Lagoon, and limiting clearing and grubbing to areas already developed.

Standard 2: Peak Flow Control

- A. Stream channel protection is not required for this project as the subject development does not propose one or more acres of impervious coverage.
- B. The proposed stormwater system is designed to adequately pass flows leading to, from and through it up to and including the 25-year design storm event as required in section 3 of the drainage manual. Refer to the HydroCAD model found in <u>Appendix E</u>.
- C. The post-development peak flow rates from the I-year, 2-year, 5-year, 10-year, 25-year and 50-year, 24-hour storms are controlled to the corresponding pre-development peak discharge rates for the site as described in "Hydraulic Analysis of Peak Rates of Runoff" above. No increase is being proposed towards the northern property. A waiver is being requested to increase flow towards the Long Island Sound as the increase towards a large water body will have no impact and will not result in adverse impacts to neighboring properties or City owned infrastructure. Reference is made to the HydroCAD report found in <u>Appendix E</u>.
- D. The ten permeable paver infiltration systems are proposed to overflow to surrounding areas when the systems exceed capacity and no tributary area is piped into the systems. As such, there are no restrictive outlets that could demonstrate a lack of adequate conveyance to pass the 100-year storm runoff.
- E. Noted

Standard 3: Construction Erosion and Sediment Control

A. The aforementioned site plans depict erosion control measures to be implemented on the site to control construction related impacts. Sediment and erosion controls such as silt fencing, stone tracking pads at construction zone entrance/exit point, hay bale inlet protection, and silt fence are proposed.

Standard 4: Operation and Maintenance

- A. A Standard City of Stamford Drainage Maintenance Agreement will be executed with the Environmental Protection Board (EPB). A draft maintenance agreement has been prepared and is included in <u>Appendix F</u>.
- B. The construction plans will include notes describing the long-term maintenance requirements for the site-specific drainage system(s) including routine and non-route inspection and maintenance tasks to be undertaken after construction is completed as well as the schedule for implementing these tasks. This information will be added to the plan set prior to filing for a building permit.

Standard 5: Stormwater Management Report

- A. This document and its associated appendices serve as the required Stormwater Management Report.
- B. Based on the above information, the proposed improvements are designed in accordance with the City of Stamford Stormwater Drainage Manual and will not adversely impact adjacent or downstream properties or City-owned drainage facilities.

Conclusion:

As noted above, the proposed improvements are designed in accordance with the City of Stamford Stormwater Drainage Manual and will not adversely impact adjacent or downstream properties or City-owned drainage facilities.

Sanitary Sewer Summary

A 12" sanitary sewer main exists within Signal Road flowing north towards Gate House Road. According to City tax records, the existing building is 10,900± SF and has historically functioned as an office. Using the CT Public Health Code guidelines (20 GPD for every 200 SF of office space), the existing sanitary sewer flow from the buildings is estimated at 1,090 GPD (refer to the Sanitary Sewer Capacity Calculations attached in <u>Appendix H</u>). Using a peak factor of 4, the peak sewage flow is 4,360 GPD (0.01 cfs).

The proposed development would result in the construction of 4 single family 5-bedroom homes. Assuming 150 GPD per bedroom per the CT Public Health Code guidelines, the proposed improvements would result in a total average daily sewage flow of 3,000 GPD. Using a peak factor of 4, the peak sewage flow is estimated at 12,600 GPD (0.02 cfs). Please refer to Appendix 5 for attached calculations.

As part of the development of 43 Gatehouse Road, a visual inspection was conducted on March 10, 2016 in the manhole located at the intersection of Gate House Road and Signal Road. During the inspection, there was minimal flow in the 12" sanitary main that services the properties. The maximum capacity of the 12" sanitary pipe is 1.83 cfs. The total proposed peak flow from the subject property using a peak factor of 4 is 0.02 cfs. The proposed peak sewage flow from the development represents approximately 1% of the maximum capacity of the main. The residential development peak flow is not anticipated to coincide with the peak flow from the surrounding office uses. With the above information in mind, it is our opinion the system can accommodate the proposed development and will not result in adverse impacts to the sanitary sewer system.

Based on the above information, the sanitary sewer system has sufficient capacity to accommodate the proposed development, and with proper implementation of the design drawings, the proposed development will not adversely impact the existing sanitary sewer system.

Appendix A

FEMA Flood Insurance Map USGS Quadrangle Map – Site Vicinity Map City of Stamford Rainfall Intensity – Duration Curves NOAA Atlas 14 Volume 10 – Precipitation Frequency NRCS Web Soil Survey

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Stamford, Connecticut, USA* Latitude: 41.0266°, Longitude: -73.5515° Elevation: 8.04 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average	recurrence	interval (ye	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.364 (0.280-0.466)	0.425 (0.327-0.545)	0.525 (0.403-0.675)	0.608 (0.464-0.784)	0.723 (0.534-0.964)	0.810 (0.587-1.10)	0.899 (0.633-1.25)	0.997 (0.670-1.42)	1.13 (0.734-1.66)	1.24 (0.787-1.86)
10-min	0.516 (0.397-0.660)	0.603 (0.463-0.772)	0.745 (0.571-0.957)	0.862 (0.657-1.11)	1.02 (0.757-1.37)	1.15 (0.831-1.56)	1.27 (0.897-1.78)	1.41 (0.948-2.01)	1.61 (1.04-2.36)	1.76 (1.12-2.63)
15-min	0.607 (0.467-0.776)	0.709 (0.545-0.908)	0.876 (0.671-1.12)	1.01 (0.773-1.31)	1.21 (0.891-1.61)	1.35 (0.977-1.83)	1.50 (1.06-2.09)	1.66 (1.12-2.37)	1.89 (1.22-2.77)	2.07 (1.31-3.09)
30-min	0.848 (0.653-1.09)	0.992 (0.763-1.27)	1.23 (0.940-1.58)	1.42 (1.08-1.83)	1.69 (1.25-2.25)	1.89 (1.37-2.57)	2.10 (1.48-2.93)	2.33 (1.56-3.32)	2.64 (1.71-3.87)	2.88 (1.82-4.30)
60-min	1.09 (0.839-1.39)	1.27 (0.980-1.63)	1.58 (1.21-2.03)	1.83 (1.40-2.36)	2.18 (1.61-2.90)	2.44 (1.77-3.30)	2.71 (1.90-3.77)	2.99 (2.01-4.26)	3.38 (2.19-4.96)	3.69 (2.33-5.50)
2-hr	1.42 (1.10-1.80)	1.67 (1.29-2.12)	2.08 (1.60-2.65)	2.42 (1.86-3.10)	2.89 (2.15-3.83)	3.25 (2.36-4.38)	3.62 (2.55-5.01)	4.01 (2.71-5.68)	4.57 (2.97-6.65)	5.01 (3.18-7.42)
3-hr	1.64 (1.27-2.07)	1.93 (1.50-2.45)	2.42 (1.87-3.08)	2.82 (2.17-3.60)	3.38 (2.52-4.47)	3.80 (2.78-5.11)	4.24 (3.01-5.86)	4.72 (3.19-6.65)	5.39 (3.51-7.82)	5.93 (3.77-8.76)
6-hr	2.05 (1.61-2.59)	2.44 (1.91-3.08)	3.08 (2.40-3.89)	3.61 (2.79-4.57)	4.33 (3.25-5.70)	4.88 (3.59-6.53)	5.45 (3.90-7.52)	6.09 (4.13-8.54)	7.02 (4.58-10.1)	7.77 (4.96-11.4)
12-hr	2.52 (1.98-3.15)	3.01 (2.37-3.77)	3.82 (2.99-4.80)	4.49 (3.50-5.66)	5.42 (4.09-7.09)	6.11 (4.52-8.14)	6.85 (4.93-9.41)	7.69 (5.23-10.7)	8.91 (5.84-12.8)	9.93 (6.35-14.5)
24-hr	2.93 (2.32-3.64)	3.55 (2.81-4.42)	4.57 (3.60-5.69)	5.41 (4.24-6.78)	6.57 (4.99-8.55)	7.43 (5.54-9.86)	8.35 (6.06-11.5)	9.44 (6.45-13.1)	11.1 (7.27-15.7)	12.4 (7.97-18.0)
2-day	3.28 (2.61-4.04)	4.03 (3.21-4.98)	5.27 (4.18-6.53)	6.30 (4.96-7.84)	7.71 (5.90-10.0)	8.76 (6.57-11.6)	9.90 (7.24-13.6)	11.3 (7.71-15.5)	13.3 (8.79-18.9)	15.1 (9.73-21.7)
3-day	3.54 (2.83-4.35)	4.37 (3.49-5.38)	5.72 (4.55-7.06)	6.84 (5.41-8.48)	8.39 (6.44-10.8)	9.53 (7.17-12.6)	10.8 (7.90-14.7)	12.3 (8.42-16.8)	14.6 (9.61-20.5)	16.5 (10.6-23.6)
4-day	3.79 (3.04-4.65)	4.66 (3.73-5.72)	6.09 (4.85-7.49)	7.27 (5.76-8.98)	8.89 (6.83-11.4)	10.1 (7.61-13.2)	11.4 (8.37-15.5)	13.0 (8.91-17.7)	15.3 (10.1-21.6)	17.4 (11.2-24.8)
7-day	4.51 (3.63-5.51)	5.45 (4.39-6.66)	6.99 (5.60-8.56)	8.27 (6.58-10.2)	10.0 (7.73-12.8)	11.3 (8.56-14.8)	12.7 (9.36-17.1)	14.4 (9.93-19.5)	16.9 (11.2-23.6)	19.0 (12.3-26.9)
10-day	5.22 (4.22-6.35)	6.21 (5.01-7.55)	7.82 (6.28-9.54)	9.15 (7.31-11.2)	11.0 (8.50-14.0)	12.4 (9.36-16.0)	13.8 (10.2-18.5)	15.5 (10.7-21.0)	18.0 (12.0-25.0)	20.1 (13.0-28.4)
20-day	7.36 (5.98-8.88)	8.46 (6.87-10.2)	10.3 (8.30-12.4)	11.8 (9.45-14.3)	13.8 (10.7-17.4)	15.4 (11.7-19.6)	17.0 (12.4-22.3)	18.7 (13.0-25.1)	21.1 (14.1-29.1)	23.0 (15.0-32.3)
30-day	9.12 (7.44-11.0)	10.3 (8.40-12.4)	12.3 (9.95-14.8)	13.9 (11.2-16.8)	16.1 (12.5-20.1)	17.8 (13.5-22.6)	19.5 (14.3-25.4)	21.3 (14.9-28.4)	23.6 (15.8-32.4)	25.4 (16.5-35.5)
45-day	11.3 (9.26-13.6)	12.6 (10.3-15.1)	14.7 (12.0-17.7)	16.5 (13.3-19.9)	18.9 (14.7-23.4)	20.8 (15.8-26.2)	22.6 (16.5-29.1)	24.4 (17.1-32.5)	26.7 (17.9-36.5)	28.4 (18.5-39.5)
60-day	13.1 (10.8-15.7)	14.5 (11.9-17.4)	16.8 (13.7-20.1)	18.6 (15.1-22.4)	21.2 (16.6-26.2)	23.2 (17.7-29.1)	25.2 (18.4-32.3)	27.0 (19.0-35.8)	29.3 (19.7-39.9)	30.9 (20.2-42.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Dec 20 11:13:39 2022

Back to Top

Maps & aerials

Small scale terrain

Precipitation Frequency Data Server

Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Appendix B

Existing On-Site Drainage Basin Map Proposed On-Site Drainage Basin Map

EXISTING CONDITIONS DRAINAGE BASIN MAP 40SIGNAL ROAD STAMFORD, CT

LAND SURVEYING

www.rednissmead.com

DATE:

SCALE: I" = 40'

Permitting

COMM. NO.:

2008

PROPOSED CONDITIONS DRAINAGE BASIN MAP 40 SIGNAL ROAD STAMFORD, CT

LAND SURVEYING

www.rednissmead.

COMM. NO.:

2008

DATE:

SCALE: I" = 40'

Permitting

Appendix C

LID Review Map

LAND SURVEYING

www.rednissmead

DATE:

SCALE: I" = 40'

COMM. NO.:

2008

PERMITTING

Yard).dwg

(Reduced Front

NOTE: ALL SITE SOILS CLASSIFIED AS NRCS HSG B

LOW IMPACT DEVELOPMENT MAP 40 SIGNAL ROAD STAMFORD, CT

SUMMARY TABLE							
TOTAL SITE AREA	101,604 SF	TOTAL DISTURBED AREA	76,500 SF				
PRE-DEVELOPMENT IMPERVIOUS	27,202 SF	POST-DEVELOPMENT IMPERVIOUS	33,770 SF				
REQUIRED RETENTION/ TREATMENT VOLUME	2,956.1 CF	PROVIDED RETENTION/ TREATMENT VOLUME	5,470 CF				
PRE-DEVELOPMENT DCIA	20,219 SF	POST-DEVELOPMENT DCIA	270 SF				
DIFFERENCE IN D	OCIA	-19,949 SF					

OTP#1

<

Appendix D

Water Quality Volume Calculations BMP Volume Calculations 72 Hour Drawdown Calculations

oiect: 40 Sign	al Road Subdivision	Proiect #:	2008	Date:	1/27/2023
cotion: Stamfor	rd CT	Ry.	SPC	Checked:	TM
cation. Stamjor		Dy.	51 C	Checkeu.	1 1/1
	Lot 1 Porous Drive	way Basin		1	
	Area=	0.061	acres]	
	Impervious Area=	0.052	acres		
	I=	0.856	а		
	R=	0.821	b		
	WQV=	0.004	ac. ft. ^c		
	WQV Required=	182.2	ft. ³		
	WQV Provided=	166	ft. ^{3 d}		
	Lot 1 Permeable P	atio Basin		1	
	Area=	0.068	acres	1	
	Impervious Area=	0.068	acres	-	
	I=	1.000	а	-	
	R=	0.950	b	-	
	WQV=	0.005	ac. ft. ^c	-	
	WQV Required=	234.0	ft. ³		
	WQV Provided=	548	ft. ^{3 d}		
	Lot 1 Bypass (Included in S	outh Bypass 1	Basin)	1	
	Area=	0.363	acres	1	
	Impervious Area=	0.020	acres	-	
	I=	0.056	а	1	
	R=	0.101	b	1	
	WQV=	0.003	ac. ft. ^c	1	
	WQV Required=	132.6	ft. ³		
	Total Required WOV Lot 1	548.7	ft ³	1	
	Total Provided WOV Lot 1	714	ft ³	1	
		/14	11.		
^a I=Perce b R=0.05 Stormw c WQV=	ent Impervious Coverage +0.009(I); Volumetric runoff Coefficient, E vater Quality Manual section 7.4.1 (1"xRxA)/12; Water Quality Volume, Equ	Equation taken f ation taken fron	rom 2004 n 2004 Cor	Connecticut	

roject: 40 Sig	nal Road Subdivision	Project #:	2008	Date:	1/27/2023
cation: Stamfo	ord, CT	By:	SPC	Checked:	ТМ
	L at 2 Paraus Drive	way Basin		ר	
	Area-		6 acres	4	
	Impervious Area=	0.05	4 acres	-	
	I=	0.82	1 ^a	-	
	R=	0.78	9 ^b	-	
	WQV=	0.00	4 ac. ft. ^c	-	
	WQV Required=	189.0	ft. ³		
	WQV Provided=	322	ft. ^{3 d}	1	
				-	
	Lot 2 Permeable P	atio Basin		4	
	Area=	0.06	8 acres	-	
	Impervious Area=	0.06	8 acres	-	
	1= D	1.00		-	
	R= WOV-	0.95	0 5 ac ft ^c	-	
	WOV Dequired-	234.0	$\int \frac{dc.}{ft^3}$		
	WOV Provided	234.0	ft ^{3 d}	•	
	WQV Provided=	557	11.		
	Lot 2 Bypass (Included in S	outh Bypass	Basin)	1	
	Area=	0.34	4 acres	1	
	Impervious Area=	0.02	9 acres		
	I=	0.08	4 ^a		
	R=	0.12	5 ^b		
	WQV=	0.00	4 ac. ft. ^c	J	
	WQV Required=	156.3	ft. ³		
	Total Required WQV Lot 2	579.3	ft. ³	1	
	Total Provided WOV Lot 2	879	ft ³		
^a I=Perc b R=0.03 Stormy c WQV= Stormy runoff ^d Takan	Total Provided WQV Lot 2 ent Impervious Coverage 5+0.009(I); Volumetric runoff Coefficient, E water Quality Manual section 7.4.1 =(1"xRxA)/12; Water Quality Volume, Equ water Quality Manual section 7.4.1. Note Wa generated by one inch of rainfall on a site.	879 Equation taken ation taken fro ater quality vo	from 2004 m 2004 Cor lume define	Connecticut nnecticut d as the	

Г

_					
roject: 40 Sign	al Road Subdivision	Project #:	2008	Date:	1/27/2023
cation: Stamfor	d, CT	By:	SPC	Checked:	ТМ
	Lot 3 Porous Drive	way Basin		ר	
	Area-		acres	4	
	Impervious Area=	0.07	6 acres	-	
	I=	0.81	1 ^a		
	R=	0.78	0 ^b	-	
	WQV=	0.00	5 ac. ft. ^c		
	WQV Required=	196.9	ft. ³		
	WQV Provided=	322	ft. ^{3 d}		
				- 7	
	Lot 3 Permeable Pa	atio Basin	0	4	
	Area=	0.06	8 acres	-	
	I_	1.00		-	
	1	0.95	0 b	-	
	WOV=	0.00	5 ac. ft. ^c	-	
	WOV Required=	234.0	ft. ³	1	
	WQV Provided=	557	ft. ^{3 d}	1	
				-	
	Lot 3 Bypass (Included in Se	outh Bypass	Basin)		
	Area=	0.34	6 acres	_	
	Impervious Area=	0.01	9 acres	-	
	1=	0.05	4 [°]	-	
	K=	0.09	9^{-}	-	
	wQv=	0.00	5 ac. 11.	4	
	WQV Required=	124.1	It.	J	
	Total Required WQV Lot 3	555.0	ft. ³		
	Total Provided WQV Lot 3	879	ft. ³		
^a I=Perce b R=0.05 Stormw c WQV= Stormw	nt Impervious Coverage +0.009(I); Volumetric runoff Coefficient, E ater Quality Manual section 7.4.1 (1"xRxA)/12; Water Quality Volume, Equa ater Quality Manual section 7.4.1. Note Wa	quation taken ation taken fro ater quality vo	from 2004 m 2004 Co lume define	Connecticut nnecticut d as the	

Г

	WATER QUA	LITY VOLUN	ME CALCUI	ATION	S	
Project:	40 Signal Road Subdivision		Project #:	2008	Date:	1/27/2023
ocation:	Stamford, CT		By:	SPC	Checked:	ТМ
	Lot	4 Porous Drivew	av Basin			
	Area=		0.069	acres	1	
	Impervious Area=		0.062	acres	-	
	I=		0.898	a	-	
	R=		0.858	b		
	WQV=		0.005	ac. ft. ^c		
	WQV Required=		213.5	ft. ³		
	WQV Provided=		536	ft. ^{3 d}		
	Lot	4 Permeable Pat	tio Basin		1	
	Area=		0.071	acres	1	
	Impervious Area=		0.071	acres	-	
	I=		1.000) ^a		
	R=	R=			-	
	WQV=		0.006	ac. ft. ^c	_	
	WQV Required=		243.3	ft. ³		
	WQV Provided=		458	ft. ^{3 d}		
		Lot 4 Bypass	5			
		South Bypass	North Bypass			
	Area=	0.361	0.026	acres	1	
	Impervious Area=	0.027	0.000	acres	1	
	I=	0.076	0.001	а		
	R=	0.118	0.051	b		
	WQV=	0.004	0.000	ac. ft. ^c		
	WQV Required=	154.7	4.8	ft. ³		
	Total Required	Total Required WOV Lot 4			1	
	Total Provided	Total Provided WQV Lot 4				
ł	 ^a I=Percent Impervious Coverage ^b R=0.05+0.009(I); Volumetric run Stormwater Quality Manual secti ^c WQV=(1"xRxA)/12; Water Qua Stormwater Quality Manual secti generated by one inch of rainfall 	noff Coefficient, Ed on 7.4.1 ality Volume, Equa ion 7.4.1. Note Wa on a site.	quation taken fror tion taken from 2 ter quality volume	n 2004 Co 004 Conne e defined a	nnecticut ecticut s the runoff	

	WATER QUA	LITY VOLU	ME CALCUL	ATION	S				
Project:	40 Signal Road Subdivision		Project #:	2008	Date:	1/27/2023			
Location:	Stamford, CT		By:	SPC	Checked:	ТМ			
		Donous Duinou	uan 1 Daain		1				
	K.U. W	R.O.W. Porous Drivew			4				
	Impervious Area-		0.081	acres	-				
	I-		0.003	a	-				
	R-		0.770	b	-				
	WOV=		0.005	ac. ft. ^c	-				
	WOV Required=		219.8	ft. ³	1				
	WQV Provided=		1,370	ft. ^{3 d}	1				
			, , , , , , , , , , , , , , , , , , ,		•				
	R.O.W	. Porous Drivev	vay 2 Basin						
	Area=		0.115	acres	-				
	Impervious Area=		0.088	acres	-				
	I=		0.763	a	-				
	R=		0.736	D	-				
	WQV=		0.007	ac. ft. ^c					
	WQV Required=		308.6	ft. ³					
	WQV Provided=		634	ft. ^{3 d}					
		ROW Ryna	SS		1				
		South Bypa	North Bynass		1				
	Area=	0.110	0.048	acres					
	Impervious Area=	0.024	0.006	acres					
1	I=	0.220	0.130	а	1				
	R=	0.248	0.167	b	1				
	WQV=	0.002	0.001	ac. ft. ^c	1				
ĺ	WOV Required=	99.5	28.9	ft. ³	1				
					3				
	Total Required V	Total Required WQV R.O.W.							
	Total Provided V	Total Provided WQV R.O.W.							
^a I=Percent Impervious Coverage									
t	 b R=0.05+0.009(I); Volumetric runoff Coefficient, Equation taken from 2004 Connecticut 								
	Stormwater Quality Manual section	on 7.4.1		004 C					
(WQV=(1"xRxA)/12; Water Qua Stormwater Quality Manual section	ality Volume, Equa	ttion taken from 2	004 Conne	cticut				
	generated by one inch of rainfall	on a site.	tor quality voluling	, defined a					
C	¹ Taken from the attached HydroC	AD report.							

Stage-Area-Storage for Pond 1D: Lot 1 Porous Driveway

Elevation	Storage	Elevation	Storage	
8 30		9.36	121	
8.32	0	9.38	121	
8 34	1	9 40	126	
8.36	2	9.42	128	
8 38	4	9 44	131	
8.40	6	9.46	133	
8.42	8	9.48	136	
8.44	11	9.50	138	
8.46	13	9.52	140	
8.48	16	9.54	142	
8.50	18	9.56	144	
8.52	20	9.58	146	
8.54	23	9.60	148	
8.56	25	9.62	149	
8.58	28	9.64	151	
8.60	30	9.66	153	
8.62	32	9.68	155	
8.64	35	9.70	157	
8.66	37	9.72	158	
8.68	40	9.74	160	
0.70	42	9.70	164	
0.72 8.74	44	9.70	166	
8 76	47	9.80	168	
8 78	52	9.84	171	WQV Provided by Lot 1 Porous
8.80	54	9.86	175	Driveway = 166 CU. FT.
8.82	56	9.88	180	
8.84	59	9.90	185	
8.86	61	9.92	191	
8.88	64	9.94	197	
8.90	66	9.96	203	
8.92	68	9.98	209	
8.94	71	10.00	215	
8.96	73	10.02	215	
8.98	76	10.04	215	
9.00	78	10.06	215	
9.02	00	10.00	210	
9.04	03	10.10	215	
9.00	88	10.12	215	
9.00	90	10.14	215	
9.10	92	10.18	215	
9.14	95	10.20	215	
9.16	97	10.22	215	
9.18	100	10.24	215	
9.20	102	10.26	215	
9.22	104	10.28	215	
9.24	107	10.30	215	
9.26	109			
9.28	112			
9.3U 0.32	114			
9.32	110			
0.04	113			

Stage-Area-Storage for Pond 1P: Lot 1 Permeable Patio

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
7 67	0	873	426	9 79	1 299
7 69	0	8 75	436	9.81	1 320
7.71	1	8.77	446	9.83	1.340
7.73	1	8.79	455	9.85	1.361
7.75	2	8.81	465	9.87	1.381
7 77	3	8 83	475	9.89	1 401
7.79	5	8.85	484	9.91	1,421
7.81	6	8.87	494	9.93	1.441
7.83	8	8.89	503	9.95	1.460
7.85	11	8.91	512	9.97	1.480
7.87	13	8.93	522	9.99	1.499
7.89	16	8.95	529	10.01	1,518
7.91	19	8.97	537	10.03	1.537
7.93	27	8.99	544	10.05	1,556
7.95	37	9.01	552	10.07	1,574
7.97	47	9.03	▶ 560	10.09	1,593
7.99	57	9.05	568	10.11	1,611
8.01	67	9.07	577	10.13	1,629
8.03	77	9.09	587	10.15	1,647
8.05	87	9.11	596	10.17	1,665
8.07	97	9.13	607	10.19	1,683
8.09	107	9.15	617	10.21	1,700
8.11	117	9.17	629	10.23	1,718
8.13	127	9.19	640	10.25	1,735
8.15	137	9.21	652		
8.17	147	9.23	665		Provided by Lot 1
8.19	157	9.25	682	Perme	able Patio = 548 CU. FT.
8.21	167	9.27	707	(Outlet	t Elevation = 9.00)
8.23	177	9.29	732		
8.25	187	9.31	756		
8.27	197	9.33	781		
8.29	207	9.35	805		
8.31	217	9.37	829		
8.33	227	9.39	853		
8.35	237	9.41	877		
8.37	247	9.43	900		
8.39	257	9.45	924		
8.41	267	9.47	947		
8.43	277	9.49	970		
8.45	287	9.51	993		
8.47	297	9.53	1,016		
8.49	307	9.55	1,039		
8.51	317	9.57	1,062		
8.53 9.55	327	9.59	1,084		
0.00	330	9.01	1,100		
0.07	040 256	9.03	1,120		
0.09	000 266	9.00	1,100		
0.01	300 276	9.07	1,1/2 1 102		
0.03 8 65	226	9.09 0.71	1,190		
8.00 8.67	206 200	0.73	1,210		
8 60	406	0.75	1 257		
8 71	400	9.75 9.77	1 278		
0.71	410	5.11	1,270		

Stage-Area-Storage for Pond 2D: Lot 2 Porous Driveway

Itest Itest Itest Itest WOV Provided by Lot 2 8.32 0 9.38 211 8.34 0 9.40 221 8.36 1 9.42 226 8.38 2 9.44 231 8.40 3 9.46 237 8.42 4 9.48 242 8.44 5 9.50 247 8.46 7 9.52 252 8.48 8 9.54 257 8.50 10 9.66 287 8.51 15 9.60 272 8.56 18 9.62 277 8.58 10 9.76 312 8.66 34 9.72 302 8.66 34 9.72 302 8.76 55 9.80 322 8.70 42 9.76 312 8.71 9.80 322 8.72 9.80 <th>Elevation</th> <th>Storage</th> <th>Elevation</th> <th>Storage</th> <th></th> <th></th>	Elevation	Storage	Elevation	Storage		
0.30 0 9.30 2.16 8.34 0 9.40 221 8.36 1 9.42 226 8.38 2 9.44 231 8.40 3 9.46 237 8.42 4 9.48 242 8.44 5 9.50 247 8.46 7 9.52 252 8.48 8 9.54 257 8.50 10 9.56 262 8.52 13 9.58 267 8.54 15 9.60 272 8.56 18 9.62 277 8.58 20 9.64 282 8.60 23 9.66 287 8.62 27 9.68 292 8.64 30 9.72 302 8.74 60 9.84 331 8.72 46 9.80 322 8.78 60 9.84 359 8.92 70 9.88 342 9.96 <td>8 30</td> <td></td> <td>0.36</td> <td><u>(Cubic-ieet)</u> 211</td> <td></td> <td></td>	8 30		0.36	<u>(Cubic-ieet)</u> 211		
0.32 0 9.40 221 8.36 1 9.42 226 8.38 2 9.44 231 8.40 3 9.46 237 8.42 4 9.48 242 8.44 5 9.50 247 8.46 7 9.52 252 8.48 8 9.64 267 8.52 13 9.58 267 8.55 18 9.66 287 8.56 18 9.62 277 8.58 20 9.64 282 8.60 23 9.66 287 8.61 34 9.72 302 8.62 27 9.68 292 8.64 30 9.70 297 8.66 34 9.72 302 8.72 46 9.80 322 8.76 5 9.82 326 8.78 60 9.84 331 8.80 61 9.92 353 8.96 <td>8 32</td> <td>0</td> <td>0.38</td> <td>216</td> <td></td> <td></td>	8 32	0	0.38	216		
8.36 1 9.42 226 8.38 2 9.44 231 8.40 3 9.46 237 8.42 4 9.48 242 8.44 5 9.50 247 8.46 7 9.52 252 8.48 8 9.54 257 8.50 10 9.56 262 8.52 13 9.58 267 8.54 15 9.60 272 8.56 18 9.64 282 8.60 23 9.66 287 8.61 30 9.70 297 8.66 34 9.72 302 8.68 38 9.74 307 8.76 5 9.82 326 9.86 337 Permeable Patio = 322 CU. FT. 8.78 60 9.86 337 8.80 6 9.84 359 8.90 91 9.96	8 34	0	9.30	210		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 36	1	9.40	221		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.38	1	0.42	220		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.30	23	9.44	231		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.40	3	9.40	201		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.44	4 5	9.40	242		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.46	5	9.50	247		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 / 8	8	9.52	252		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 50	10	9.54	262		
8.54 15 9.60 272 8.56 18 9.64 282 8.56 23 9.66 287 8.60 23 9.66 287 8.60 23 9.66 292 8.64 30 9.70 297 8.66 34 9.70 297 8.66 34 9.72 307 8.70 42 9.76 312 8.77 46 9.80 322 8.77 9.80 322 8.76 55 9.84 331 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.22 385 8.98 112 10.44 393 9.06 133 10.12 427 9.08 138 10.14 437 9.114 153 10.22 479 9.18 164 10.24 490 9.26 185 9.28 190 9.26 185 9.28 190 9.30 195 9.32 200 9.34 205 10.5 528	8 52	13	9.50	267		
0.57 10 0.60 212 8.56 18 9.62 277 8.58 20 9.66 287 8.62 27 9.68 292 8.64 30 9.70 297 8.66 34 9.72 302 8.68 38 9.74 307 8.70 42 9.76 312 8.772 46 9.78 317 8.772 46 9.84 331 8.78 60 9.84 331 8.80 65 9.88 332 8.76 55 9.82 353 8.82 70 9.88 332 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.8 409 9.12 148 10.14 437 9.16 133 10.12 427 9.08 138 10.20 468 9.16 159 10.22 479 9.18 164 10.24 490 9.20 169 10.26 502 9.22 174 <	8 54	15	9.60	207		
8.58 20 9.64 282 8.60 23 9.66 287 8.62 27 9.68 292 8.64 30 9.70 297 8.66 34 9.72 302 8.68 38 9.74 307 8.70 42 9.76 312 8.77 55 9.84 321 8.77 60 9.84 331 8.76 55 9.86 337 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 3665 8.92 96 9.98 372 8.94 101 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.11 130.16 447 9.12 148 10.22 479 9.18 164 9.22 174 10.28 515 9.24 179 9.26 185 9.26 185 9.34 205	8 56	18	9.62	272		
8.60 23 9.66 227 8.62 27 9.68 292 8.64 30 9.70 297 8.66 34 9.72 302 8.66 34 9.72 302 8.66 34 9.74 307 8.70 42 9.76 312 8.77 42 9.78 317 8.77 45 9.82 322 8.76 55 9.82 322 8.76 55 9.84 331 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.16 133 10.12 427 9.08 138 10.14 437 9.16 159 10.22 479 9.18 164 10.24 490 9.20 169 10.30 528 9.26 185 9.22 174 9.26 185 <	8 58	20	9.62	282		
8.62 27 9.68 292 8.64 30 9.70 297 8.66 34 9.72 302 8.68 38 9.74 307 8.70 42 9.76 312 8.77 46 9.78 317 8.77 46 9.84 331 8.76 55 9.82 326 8.78 60 9.84 331 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.11 153 10.22 479 9.18 164 10.24 490 9.20 169 10.26 502 9.22 174 10.28 515 9.24 179 10.30 528 9.26 185 9.26 9.34 205 10.30 528	8 60	23	9.66	287		
8.64 30 9.70 297 8.66 34 9.72 302 8.66 38 9.74 307 8.70 42 9.76 312 8.70 42 9.76 312 8.70 42 9.78 317 8.74 50 9.80 322 8.76 55 9.82 326 8.76 55 9.86 337 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.86 81 9.92 353 8.98 107 10.02 385 8.99 107 10.02 385 8.98 112 10.04 393 9.00 117 10.66 401 9.02 122 10.06 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.10 143 10.16 447 9.12 148 10.24 490 9.22 174 10.28 515 9.24 179 10.30 528 9.26 185 9.22 103 9.33 195 9.22 105 9.34 205 102 102	8.62	20	9.68	207		
8.66 34 9.72 302 8.68 38 9.74 307 8.70 42 9.76 312 8.72 46 9.78 317 8.74 50 9.80 322 8.76 55 9.82 326 8.76 55 9.84 331 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.06 133	8 64	30	9 70	202		
8.68 38 9.74 307 8.70 42 9.76 312 8.72 46 9.78 317 8.74 50 9.80 322 8.76 55 9.82 326 8.78 60 9.84 331 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 998 372 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.10 143 10.16 447 9.11 148 10.20 468	8 66	34	9 72	302		
8.70 42 9.76 312 8.72 46 9.78 317 8.74 50 322 WQV Provided by Lot 2 8.76 55 9.82 326 8.78 60 9.84 331 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.08 138 10.14 437 9.10 143 10.16 447 9.16 159 10.22 479 9.20 169 10.26 50	8.68	38	9 74	307		
8.72 46 9.78 317 8.74 50 9.80 322 8.76 55 9.82 326 8.78 60 9.84 331 8.80 65 9.84 331 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.16 159 10.22 479 9.16 159 10.22 479 9.20 169 10.26 502 <td>8 70</td> <td>42</td> <td>9.74</td> <td>312</td> <td></td> <td></td>	8 70	42	9.74	312		
8.74 50 8.76 55 9.80 322 8.76 55 9.82 326 9.80 337 8.80 65 9.84 331 8.80 65 9.84 337 9.82 326 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.92 96 9.98 372 8.94 101 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.8 409 9.04 127 10.10 418 9.06 133 10.12 427 9.14 153 10.20 468	8 72	46	9 78	317		
8.76 55 9.82 326 8.78 60 9.84 331 8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.14 153 10.20 468 9.16 159 10.22 479 9.18 164 10.24 490 9.20 169 10.26 502	8 74	50	9.80	322		
8.78609.843318.80659.863378.82709.883428.84759.903488.86819.923538.88869.943598.90919.963658.92969.983728.9410110.003788.9610710.023858.9811210.043939.0011710.064019.0212210.084099.0412710.104189.0613310.124279.0813810.144379.1014310.164479.1214810.204689.1615910.224799.1816410.244909.2016910.265029.2217410.285159.2417910.30 528 9.301959.322009.34205	8 76	55	9.82	326		
8.80 65 9.86 337 8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.12 148 10.16 447 9.14 153 10.20 468 9.16 159 10.22 479 9.20 169 10.26 502 9.22 174 10.28 515 9.26 185 9.26 185	8 78	60	9.84	331	WQV Provided by Lo	t 2
8.82 70 9.88 342 8.84 75 9.90 348 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.10 143 10.16 447 9.12 148 10.20 468 9.16 159 10.22 479 9.18 164 10.24 490 9.20 169 10.26 502 9.22 174 10.28 515 9.24 179 10.30 528 9.26 185 9.28 190 9.30 195 9.32 200 9.34 205 10.56 528	8.80	65	9.86	337	Permeable Patio = 32	22 CU. FT.
8.84 75 9.90 348 8.86 81 9.92 353 8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.10 143 10.16 447 9.12 148 10.22 479 9.18 164 10.24 490 9.20 169 10.26 502 9.22 174 10.28 515 9.24 179 10.30 528 9.32 200 95 9.32 200 95 9.34 205	8.82	70	9.88	342		
8.86 81 9.92 353 8.88 86 9.94 359 8.90 91 9.96 365 8.92 96 9.98 372 8.94 101 10.00 378 8.96 107 10.02 385 8.98 112 10.04 393 9.00 117 10.06 401 9.02 122 10.08 409 9.04 127 10.10 418 9.06 133 10.12 427 9.08 138 10.14 437 9.10 143 10.16 447 9.12 148 10.22 479 9.14 153 10.20 468 9.16 159 10.22 479 9.20 169 10.26 502 9.22 174 10.28 515 9.24 179 10.30 528 9.28 190 9.34 205	8.84	75	9.90	348		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.86	81	9.92	353		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.88	86	9.94	359		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.90	91	9.96	365		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.92	96	9.98	372		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.94	101	10.00	378		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.96	107	10.02	385		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.98	112	10.04	393		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.00	117	10.06	401		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.02	122	10.08	409		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.04	127	10.10	418		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.06	133	10.12	427		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.08	138	10.14	437		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.10	143	10.16	447		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.12	148	10.18	457		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.14	153	10.20	468		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.16	159	10.22	479		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.18	164	10.24	490		
9.22 174 10.28 515 9.24 179 10.30 528 9.26 185 9.28 190 9.30 195 9.32 200 9.34 205	9.20	169	10.26	502		
9.24 179 10.30 528 9.26 185	9.22	174	10.28	515		
9.26 185 9.28 190 9.30 195 9.32 200 9.34 205	9.24	179	10.30	528		
9.28 190 9.30 195 9.32 200 9.34 205	9.26	185				
9.30 195 9.32 200 9.34 205	9.28	190				
9.32 200 9.34 205	9.30	195				
9.04 200	9.32	200				
	9.34	205				

Stage-Area-Storage for Pond 2P: Lot 2 Permeable Patio

Elevation	Storage	Elevation	Storage	Elevation	Storage	
7 / 2	0	8.48	(cubic-icci) /33	9.54	1 316	
7.42	0	8 50	400	9.54	1 337	
7.44	1	8.52	453	9.58	1,357	
7 48	1	8.54	463	9.60	1,378	
7.10	2	8.56	473	9.62	1,398	
7.50	2 4	8 58	482	9.62	1 418	
7.54	5	8.60	492	9.66	1 437	
7.56	7	8.62	502	9.68	1 457	
7.58	9	8 64	511	9 70	1 476	
7.60	11	8.66	520	9.72	1,496	
7.62	14	8.68	530	9.74	1.515	
7.64	17	8.70	538	9.76	1,534	
7.66	20	8.72	545	9.78	1.553	
7.68	29	8.74	553	9.80	1,571	
7.70	39	8.76	561	9.82	1,590	
7.72	49	8.78	569	9.84	1,608	
7.74	59	8.80	577	9.86	1,626	
7.76	69	8.82	586	9.88	1,644	
7.78	79	8.84	596	9.90	1,661	
7.80	90	8.86	606	9.92	1,679	
7.82	100	8.88	617	9.94	1,696	
7.84	110	8.90	628	9.96	1,714	
7.86	120	8.92	639	9.98	1,731	
7.88	130	8.94	652	10.00	1,748	
7.90	140	8.96	664	Ν		
7.92	150	8.98	677		ovided by Lot 2	
7.94	160	9.00	695	Permea	ble Patio = 557 CU F	т
7.96	171	9.02	720	(Outlet F	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
7.98	181	9.04	745		_ievalion = 0.75)	
8.00	191	9.06	770			
8.02	201	9.08	795			
8.04	211	9.10	819			
8.00	221	9.12	844			
0.00	231	9.14	000			
0.10	241	9.10	092			
0.1Z 8.1/	201	9.10	910			
8 16	202	9.20	940			
8 18	282	9.22	986			
8 20	292	9.26	1 010			
8 22	302	9.28	1,010			
8.24	312	9.30	1,055			
8.26	322	9.32	1.078			
8.28	332	9.34	1,101			
8.30	343	9.36	1,123			
8.32	353	9.38	1,145			
8.34	363	9.40	1,167			
8.36	373	9.42	1,189			
8.38	383	9.44	1,211			
8.40	393	9.46	1,232			
8.42	403	9.48	1,253			
8.44	413	9.50	1,274			
8.46	423	9.52	1,295			
		1		1		

Stage-Area-Storage for Pond 3D: Lot 3 Porous Driveway

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	
8.30	Ó	9.36	211	
8.32	0	9.38	216	
8.34	0	9.40	221	
8.36	1	9.42	226	
8.38	2	9.44	231	
8.40	3	9.46	237	
8.42	4	9.48	242	
8.44	5	9.50	247	
8.46	7	9.52	252	
8.48	8	9.54	257	
8.50	10	9.56	262	
8.52	13	9.58	267	
8.54	15	9.60	272	
0.00	10	9.02	211	
0.00 8.60	20	9.04	202	
8.62	23	9.00	207	
8 64	30	9.00	292	
8.66	34	9.72	302	
8.68	38	9.74	307	
8.70	42	9.76	312	
8.72	46	9 78	317	
8.74	50	9.80	322	
8.76	55	9.82	326	WOV Provided by Let 2 Percup
8.78	60	9.84	331	Driveway 222 CLL FT
8.80	65	9.86	337	Driveway = 322 CO. FT.
8.82	70	9.88	342	
8.84	75	9.90	348	
8.86	81	9.92	353	
8.88 9.00	80	9.94	309	
8.90	91	9.90	372	
8 94	101	10 00	378	
8.96	107	10.00	385	
8.98	112	10.04	393	
9.00	117	10.06	401	
9.02	122	10.08	409	
9.04	127	10.10	418	
9.06	133	10.12	427	
9.08	138	10.14	437	
9.10	143	10.16	447	
9.12	148	10.18	457	
9.14	153	10.20	468	
9.10	109	10.22	479	
9.10	104	10.24	490	
9.20	100	10.20	515	
9.22	179	10.30	528	
9.26	185	.0.00	020	
9.28	190			
9.30	195			
9.32	200			
9.34	205			

Stage-Area-Storage for Pond 3P: Lot 3 Permeable Patio

Elevation	Storage	Elevation	Storage	Elevation	Storage	
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)	
7.42	0	8.48	433	9.54	1,316	
7.44	0	8.50	443	9.56	1,337	
7.46	1	8.52	453	9.58	1,357	
7.48	1	8.54	463	9.60	1,378	
7.50	2	8.50	473	9.62	1,398	
7.52	4	8.58	482	9.64	1,418	
7.54	5	8.60	492	9.66	1,437	
7.50	1	8.62	502	9.68	1,457	
7.58	9	8.64	511	9.70	1,476	
7.60	11	8.00	520	9.72	1,490	
7.02	14	0.00	530	9.74	1,010	
7.04	17	0.70	030 E4E	9.70	1,004	
7.00	20	9.72	552	9.70	1,000	
7.00	29	0.74	553	9.00	1,571	
7.70	39 40	0.70	501	9.02	1,090	
7.72	49 50	8.80	577	9.04	1,000	
7.74	60	8.82	586	9.00	1,020	
7.78	79	8.84	596	9.00 9.00	1,044	
7.70	90 90	8 86	606	9.90	1,001	
7.82	100	8.88	617	9.02	1,675	
7.84	110	8 90	628	9.94	1 714	
7.86	120	8.92	639	9.98	1 731	
7.88	130	8.94	652	10.00	1,748	
7.90	140	8.96	664	10.00	.,	
7.92	150	8.98	677			
7.94	160	9.00	695		ovided by Lot 3	
7.96	171	9.02	720	Permea	ble Patio = 557 CU. F	Τ.
7.98	181	9.04	745	(Outlet E	Elevation = 8.75)	
8.00	191	9.06	770			
8.02	201	9.08	795			
8.04	211	9.10	819			
8.06	221	9.12	844			
8.08	231	9.14	868			
8.10	241	9.16	892			
8.12	251	9.18	916			
8.14	262	9.20	940			
8.16	272	9.22	963			
8.18	282	9.24	986			
8.20	292	9.26	1,010			
8.22	302	9.28	1,033			
8.24	312	9.30	1,055			
8.20	322	9.32	1,078			
0.20	33Z	9.34	1,101			
0.30	343	9.30	1,123			
0.0Z	262	9.30	1,140			
0.04 8 36	203	9.40 0.40	1,107			
0.00 2 2 2	202	9.42 0.11	1,109			
0.00 8 / 0	202 202	0.44 0.46	1 222			
8 4 2	403	0.40 0.48	1 253			
8 44	413	9.50	1 274			
8 46	423	9.52	1 295			
0.10	120		1,200			
Stage-Area-Storage for Pond 4D: Lot 4 Porous Driveway

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	
7.50	0	8.56	368	
7.52	Ő	8.58	377	
7.54	1	8.60	385	
7.56	2	8.62	394	
7.58	3	8 64	402	
7.60	5	8.66	411	
7 62	8	8 68	419	
7.64	10	8.70	428	
7.66	14	8.72	436	
7.68	17	8.74	444	
7.70	21	8.76	452	
7.72	26	8.78	460	
7.74	31	8.80	468	
7.76	36	8.82	475	
7.78	42	8.84	483	
7.80	48	8.86	490	
7.82	55	8.88	497	
7.84	62	8.90	504	
7.86	69	8.92	511	
7.88	77	8.94	517	
7.90	86	8.96	524	
7.92	94	8.98	530	
7.94	103	9.00	536	
7.96	111	9.02	543	
7.98	120	9.04	550	
8.00	128	9.06	559	
8.02	137	9.08	568	
8.04	146	9.10	578	WOV Provided by Lot 4 Porous
8.06	154	9.12	589 🗲	Drivoway = 536 CU ET
8.08	163	9.14	601	Diveway = 550 CO. 1 1.
8.10	171	9.16	613	
8.12	180	9.18	626	
8.14	188	9.20	640	
8.16	197	9.22	654	
8.18	205	9.24	669	
8.20	214	9.26	685	
8.22	223	9.28	702	
8.24	231	9.30	719	
8.26	240	9.32	738	
8.28	248	9.34	756	
8.30	257	9.36	//6	
8.32	265	9.38	/90	
0.34	274	9.40	017	
0.30	202	9.42	017 917	
0.30 8.40	291	9.44	817	
0.40 8 12	200 200	0 / R	Q17	
8 <i>11</i>	300	0 50	817	
8 46	375	3.00	017	
8 48	334			
8 50	342			
8 52	351			
8 54	360			
0.01	000			

Stage-Area-Storage for Pond 4P: Lot 4 Permeable Patio

Elevation	Storage	Elevation	Storage	Elevation	Storage
7.42	0	8.48	342	9.54	1,177
7.44	0	8.50	349	9.50	1,199
7.40	1	8.52	300	9.58	1,220
7.48	2	8.54	303	9.60	1,242
7.50	3	8.50	370	9.62	1,264
7.52	4	8.58	3//	9.64	1,280
7.54	0	8.60	385	9.00	1,307
7.50	8	8.62	393	9.68	1,329
7.58	11	8.04	401	9.70	1,351
7.00	14	0.00	409	9.72	1,372
7.02		0.00	419	9.74	1,094
7.04	21	0.70	431	9.70	1,410
7.00	20	0.72	442	9.70	1,430
7.00	JZ // 1	0.74	403	9.00	1,459
7.70	4 I 50	0.70	402	9.02	1,401
7.72	58	8.80	409	9.04	1,505
7.74	67	8.82	411	9.00	1,524
7.70	76	8.84	403	9.00	1,540
7.70	84	8.86	494 504	9.90	1,500
7.00	03	8.88	514	0.02	1,550
7.02	102	8 90	525	0.04	1,011
7.04	102	8 92	526	9.90	1,033
7.88	110	8 94	548	10.00	1 677
7.00	128	8 96	561	10.00	1,011
7.00	136	8 98	574		
7.94	145	9.00	591	V WQV P	rovided by Lot 4
7.96	154	9.02	612	Permea	ble Patio = 458 CU. FT.
7.98	162	9.04	634	(Outlet	Elevation = 8.75)
8.00	170	9.06	656		
8.02	179	9.08	677		
8.04	187	9.10	699		
8.06	195	9.12	721		
8.08	203	9.14	743		
8.10	211	9.16	764		
8.12	218	9.18	786		
8.14	226	9.20	808		
8.16	234	9.22	829		
8.18	241	9.24	851		
8.20	248	9.26	873		
8.22	256	9.28	895		
8.24	263	9.30	916		
8.26	270	9.32	938		
8.28	277	9.34	960		
8.30	284	9.36	981		
8.32	290	9.38	1,003		
8.34	297	9.40	1,025		
8.36	304	9.42	1,047		
8.38	310	9.44	1,068		
8.40	316	9.46	1,090		
8.42	323	9.48	1,112		
8.44 0.46	329	9.50	1,134		
ð.40	335	9.52	1,155		
		-		-	

Stage-Area-Storage for Pond RD1: R.O.W. Porous Driveway 1

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
10.5210 11.58 1.044 12.64 2.871 10.54 39 11.60 10.63 12.66 2.971 10.56 58 11.62 10.63 12.66 2.964 10.58 77 11.64 1.022 12.70 3.011 10.60 97 11.66 11.21 12.70 3.011 10.62 116 11.68 1.138 12.74 3.105 10.64 135 11.70 1.153 12.76 3.152 10.66 155 11.72 1.167 12.82 3.233 10.72 213 11.76 1.196 12.82 3.233 10.74 232 11.80 1.225 3.283 10.76 251 11.82 1.240 12.86 3.336 10.76 251 11.84 1.254 12.99 3.480 10.80 290 11.86 1.269 12.92 3.577 10.84 329 11.90 1.298 12.96 3.621 10.86 348 11.92 1.312 12.98 3.668 10.84 329 11.96 1.341 1.94 1.327 10.96 445 12.06 1.370 1.300 3.714 10.92 406 11.94 1.327 13.00 3.714 10.96 445 12.06 1.370 1.116 11.96 12.12 1.652 1.574 13.00 11.06 541 12	10.50	0	11.56	1 025	12 62	2 824
10.54 10.64 11.60 10.63 12.66 2.917 10.56 58 11.62 10.63 12.66 2.917 10.56 58 11.62 10.63 12.66 2.917 10.60 97 11.66 1.121 12.70 3.011 10.60 97 11.66 1.121 12.72 3.058 10.62 116 11.68 1.138 12.74 3.105 10.64 135 11.70 1.153 12.76 3.152 10.66 155 11.72 1.167 12.78 3.199 10.68 174 11.74 1.182 12.80 3.246 10.70 193 11.76 1.966 12.88 3.433 10.72 213 11.78 1.242 3.283 10.74 232 11.80 1.225 12.86 3.336 10.76 251 11.86 1.242 12.90 3.480 10.80 290 11.86 12.29 3.527 10.82 309 11.86 12.28 3.668 10.84 329 11.90 1.298 12.96 3.621 10.96 445 12.00 1.370 13.206 3.668 10.84 329 11.96 1.341 13.00 3.714 10.92 406 12.02 1.389 12.96 3.668 11.94 12.24 1.930 1.266 12.07 11.10 580 1	10.50	19	11.58	1 044	12.62	2,821
10.565811.621.08312.682.96410.587711.641,10212.703.01110.609711.661,12112.723.05810.6211611.681,13812.743.10510.6413511.701.15312.763.15210.6615511.721.16712.783.19910.6817411.741.18212.803.24610.7019311.761.19612.823.29310.7423211.801.22512.863.38610.7625111.821.24012.883.43310.7827111.841.25412.903.57410.8230911.861.26912.923.52710.8230911.881.28312.943.57410.8634811.921.31212.983.66810.8634811.921.37013.003.71410.9038711.961.34113.003.71410.9240612.241.83913.003.71410.9442512.041.4641.60911.0654112.121.65213.003.71410.9866112.141.69913.003.71411.9912.241.93311.6012.421.93311.1663812.241.93311.5212.3611.1865712.241.	10.52	39	11.60	1,063	12.61	2,917
10.501711.641.00012.703.01110.609711.661.12112.723.05810.6211611.681.13312.743.10510.6413511.701.15312.763.15210.6615511.721.16712.783.19910.6817411.741.18212.803.24610.7019311.761.91612.823.29310.7221311.761.91612.823.33910.7423211.801.22512.863.33610.7625111.821.24112.843.33910.7827111.841.25412.903.48010.8029011.861.26912.923.52710.8230911.861.28312.943.57410.8432911.901.29812.963.62110.863441.921.31212.983.66810.8836711.941.32713.003.71410.9644512.001.3701.3003.71410.9644512.021.4621.46411.0654112.161.74511.0856112.161.74511.1259912.161.74511.1461912.201.83911.1663812.221.86211.1663812.241.98011.1663812.2	10.56	58	11.60	1,000	12.00	2,964
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.58	77	11.62	1 102	12.00	3 011
10.621111.681.12812.743.00510.6413511.701.15312.763.15210.6615511.721.16712.783.19910.6817411.741.18212.803.24610.7019311.761.91612.823.29310.7221311.761.91612.843.33910.7423211.801.22512.863.33610.7625111.821.2443.33910.7827111.841.25412.903.48010.8029011.861.26912.923.52710.8230911.861.26912.923.52710.8230911.881.27113.003.71410.8634811.921.31212.983.66810.8432911.901.29812.963.62110.8634811.921.3161.34110.9038711.961.3411.32711.0654412.061.51611.0654412.121.65211.0654112.141.69911.1259912.181.79211.1461912.201.83911.1512.302.07411.2673512.322.11411.2673512.322.21411.3077312.362.21411.3481212.402.308 <t< td=""><td>10.50</td><td>97</td><td>11.66</td><td>1,102</td><td>12.70</td><td>3,058</td></t<>	10.50	97	11.66	1,102	12.70	3,058
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.00	116	11.68	1 1 3 8	12.72	3 105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.62	135	11.00	1 153	12.74	3 152
10.66 174 11.74 $1,182$ 12.80 3.246 10.70 193 11.76 1.96 12.82 3.246 10.72 213 11.76 1.211 12.84 3.339 10.74 232 11.80 1.225 12.84 3.339 10.76 251 11.82 1.240 12.88 3.433 10.76 251 11.86 1.269 12.92 3.527 10.80 290 11.86 1.269 12.92 3.574 10.80 290 11.86 1.269 12.92 3.574 10.84 329 11.90 1.298 12.96 3.621 10.86 348 11.92 1.312 12.94 3.574 10.86 348 11.92 1.312 12.96 3.621 10.90 387 11.96 1.341 1.327 13.00 3.714 10.90 387 11.96 1.341 1.326 12.00 1.370 10.96 445 12.02 1.477 1.464 11.00 483 12.06 1.518 1.742 11.06 541 12.12 1.652 $Driveway 1 = 1.370$ CU. FT. 11.10 560 12.28 2.027 1.370 11.12 599 12.18 1.792 1.312 11.14 619 12.26 1.980 11.22 696 12.28 2.0274 11.24 715 12.36 2.214 </td <td>10.64</td> <td>155</td> <td>11.70</td> <td>1,100</td> <td>12.70</td> <td>3 199</td>	10.64	155	11.70	1,100	12.70	3 199
10.7019311.761.19612.823.29310.7221311.781.21112.843.33910.7423211.801.22412.883.43310.7625111.821.24012.883.43310.7625111.861.25412.903.48010.8230911.861.26912.923.52710.8230911.861.28312.943.67410.8432911.901.29812.963.66110.8634811.921.31212.983.66810.8634811.921.37113.003.71410.9938711.961.3411.99510.9644512.001.37010.9644512.021.41710.9846412.041.46411.0048312.06h.51111.0250312.06h.51111.0856112.141.69211.1663812.221.88611.1865712.241.93311.2067712.261.98011.2269612.241.93311.3077312.362.21411.3185112.442.40211.3279312.382.26111.3385112.442.40611.4490912.502.54211.3583112.442.40611.4490912.50 <td>10.68</td> <td>174</td> <td>11 74</td> <td>1 182</td> <td>12.70</td> <td>3 246</td>	10.68	174	11 74	1 182	12.70	3 246
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.00	193	11.76	1 196	12.00	3 293
10.7423211.801.2112.863.38610.7625111.821.24012.883.43310.7827111.841.25412.903.48010.8029011.861.26912.923.52710.8230911.881.28312.943.57410.8432911.901.29812.963.62110.8634811.921.31212.983.66110.8836711.961.3411.32713.003.71410.9938711.961.3411.003.71410.9940611.981.3561.3003.71410.9944512.001.3701.3003.71410.9944512.021.4171.6651.10611.0654112.121.6521.0651.06511.0654112.141.6991.1461.32711.1058012.161.7451.370 CU. FT.11.1111.1259912.181.79211.1461912.201.83911.1267712.261.98011.2269612.282.02711.2471512.302.07411.3077312.362.21411.3181212.442.40211.4490912.502.54211.3385112.442.40211.4490912.502.54211.33	10.70	213	11.78	1 211	12.84	3 339
10.7625111.8012.803.43310.7827111.841.25412.903.48010.8029011.861.26912.923.52710.8230911.881.28312.943.57410.8432911.901.29812.963.62110.8634811.921.31212.983.66810.8836711.941.32713.003.71410.9038711.961.34113.003.71410.9240612.021.47710.9846412.041.46411.0048312.061.51111.0250312.081.55811.0654112.121.65211.0654112.121.65211.0654112.141.69911.1058012.261.83911.1461912.201.83911.1259912.181.79211.1461912.201.83611.1259912.322.16711.3077312.362.21411.3279312.382.26111.3485112.442.40211.4490912.502.54211.4490912.502.54211.4490912.502.54211.3385112.442.40211.4490912.502.54211.4490912.562.683	10.74	232	11.80	1 225	12.86	3,386
10.7827111.841.25412.903.48010.8029011.861.26912.923.52710.8230911.861.28312.943.57410.8432911.901.29812.963.62110.8634811.921.31212.983.66810.8836711.941.32713.003.71410.9038711.961.34113.003.71410.9240611.981.35613.003.71410.9442512.001.37013.003.71410.9846412.041.65214.4711.0452212.101.66514.4111.0556112.141.69911.1058012.161.74511.1259912.161.74511.1259912.302.07411.2269612.241.93311.1269712.302.07411.2673512.322.16711.3077312.362.21411.3481112.442.40211.4490912.482.46611.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.562.68311.5096712.562.68311.5298612.542.666 <td>10.76</td> <td>251</td> <td>11.82</td> <td>1 240</td> <td>12.88</td> <td>3 433</td>	10.76	251	11.82	1 240	12.88	3 433
10.8029011.861.26912.923.52710.8230911.881.28312.943.57410.8432911.901.29812.963.62110.8634811.921.31212.983.66810.8836711.941.32713.003.71410.9038711.961.3411.35610.9442512.001.37010.9644512.021.41710.9846412.041.46411.0048312.061.51811.0452212.101.60511.0856112.141.69911.1058012.161.74511.1259912.181.79211.1461912.201.83911.1259912.322.12111.1865712.241.93311.2067712.261.98011.2269612.282.02711.3377312.362.21411.3077312.362.21411.3481212.442.40211.3885112.442.40211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.562.68311.5096712.562.68311.541.00512.602.777<	10.78	271	11.84	1 254	12.00	3 480
10.8230911.881.28312.943.57410.8432911.901.28812.963.62110.8634811.921.31212.983.66810.8836711.941.32713.00 3.714 10.9038711.961.34113.00 3.714 10.9240611.981.35613.00 3.714 10.9442512.001.37010.9644511.0944512.041.46411.0048312.061.51111.0054112.121.65211.0654112.141.69911.0654112.161.74511.1058012.161.74511.1259912.181.79211.1461912.201.83911.1259912.181.79211.1461912.201.83911.1259912.261.98011.2269612.282.02711.2471512.302.07411.2573512.322.12111.2673512.322.12111.3077312.362.26111.3481212.402.30811.3683112.442.40211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4692812.522.58911	10.70	290	11.81	1 269	12.00	3 527
10.8432911.801.28812.963.62110.8634811.921.31212.983.66810.8836711.941.32713.003.71410.9038711.961.34113.003.71410.9240611.981.35610.9442512.001.37010.9644512.021.41710.9846412.041.46411.0048312.061.55811.0452212.101.60511.0654112.121.65211.0856112.141.69911.1058012.161.74511.1259912.181.79211.1461912.201.83911.1267712.261.98011.2067712.261.98011.2269612.282.02711.2471512.302.07411.2579312.362.26111.3385112.442.40211.3481212.402.30811.3885112.442.40211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.469281	10.82	309	11.88	1,283	12.02	3 574
10.8634811.921.31212.983.66810.8836711.941.32713.003.71410.9038711.961.34113.003.71410.9240611.981.35610.9442512.001.37010.9644512.021.41710.9846412.041.46411.0048312.061.51111.0250312.081.55811.0452212.101.60511.0556112.141.69911.1058012.161.74511.1259912.181.79211.1461912.201.83911.1663812.241.98311.2067712.261.98011.2269612.322.07411.2471512.302.07411.2579312.362.21411.3077312.362.21411.3481212.402.30811.3683112.422.35511.3885112.442.40611.4490912.502.54211.4494712.542.63611.5096712.562.68311.5298612.582.73011.541.00512.602.777	10.84	329	11.90	1 298	12.96	3 621
10.8836711.921.32713.003.71410.9038711.961.34110.9240611.981.35610.9442512.001.37010.9644512.021.41710.9846412.041.46411.0048312.061.55811.0452212.101.60511.0856112.141.66911.1259912.161.74511.1058012.161.74511.1259912.181.79211.1663812.221.83611.1266712.241.93311.2067712.261.98011.2269612.282.02711.2471512.302.07411.3077312.362.21411.3077312.362.21411.3185112.442.40211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4494712.542.68311.5298612.582.73011.541.00512.602.777	10.86	348	11.92	1 312	12.00	3 668
10.9038711.961.32110.9240611.981.35610.9442512.001.37010.9644512.021.41710.9846412.041.46411.0048312.061.51111.0250312.081.55811.0654112.121.65211.0856112.141.69211.1058012.161.74511.1259912.181.79211.1663812.221.83611.1865712.241.93311.2067712.261.98011.2269612.282.02711.2471512.302.07411.2579312.362.21411.3077312.362.21411.3481212.442.40211.4490912.502.54211.3885112.442.40211.4490912.502.54211.3885112.442.40211.4490912.502.54211.4692812.522.58911.4494712.562.68311.5096712.562.68311.5298612.582.73011.541.00512.602.777	10.88	367	11.94	1 327	13.00	3 714
10.0240611.981.35610.9442512.001.37010.9644512.021.41710.9846412.021.41711.0048312.061.51111.0250312.081.55811.0654112.121.65211.0856112.141.69911.1158012.161.74511.1259912.181.79211.1461912.201.83911.1663812.221.88611.1265712.241.93311.2067712.261.98011.2269612.282.02711.2375412.342.16711.3077312.362.21411.3683112.422.35511.3885112.442.40211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4490912.502.54211.4494712.542.63611.5096712.562.68311.5298612.582.73011.541.00512.602.777	10.90	387	11.96	1 341	10.00	0,114
10.94 425 12.00 $1,370$ 10.96 445 12.02 $1,417$ 10.98 464 12.04 $1,464$ 11.00 483 12.06 $1,511$ 11.02 503 12.08 $1,558$ 11.04 522 12.10 $1,605$ 11.06 541 12.12 $1,652$ 11.08 561 12.14 $1,699$ 11.10 580 12.16 $1,745$ 11.12 599 12.18 $1,792$ 11.14 619 12.22 $1,839$ 11.16 638 12.22 $1,886$ 11.22 696 12.28 $2,074$ 11.26 735 12.32 $2,121$ 11.26 735 12.32 $2,121$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.46 928 12.52 $2,589$ 11.48 947 12.54 $2,636$ 11.48 947 12.54 $2,636$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	10.92	406	11.98	1,356		
10.3614512.021,41710.9846412.041,46411.0048312.061,51111.0250312.081,55811.0452212.101,60511.0654112.121,65211.0856112.141,69911.1058012.161,74511.1259912.181,79211.1663812.221,83911.1663812.221,88611.1865712.241,93311.2067712.261,98011.2269612.282,02711.2471512.302,07411.2573512.322,12111.3077312.362,21411.3112.422,35511.3885112.442,40211.4490912.502,54211.4490912.502,54211.4894712.542,63611.5096712.562,68311.5298612.582,73011.541,00512.602,777	10.94	425	12 00	1 370		
10.3816412.041.46411.0048312.061.51111.0250312.081.55811.0452212.101.65211.0654112.121.65211.0856112.141.69911.1058012.161.74511.1259912.181.79211.1461912.201.83911.1663812.221.88611.1865712.241.93311.2067712.261.98011.2269612.282.02711.2471512.302.07411.2673512.322.12111.3077312.362.21411.3181112.442.40211.4490912.502.54211.4692812.522.58911.4894712.562.68311.5096712.562.68311.5298612.582.73011.541.00512.602.777	10.96	445	12.02	1,417		
11.0048312.061.51111.0250312.081.55811.0452212.101.60511.0654112.121.65211.0856112.141.69911.1058012.161.74511.1259912.201.83911.1663812.221.88611.1865712.241.93311.2067712.261.98011.2269612.282.02711.2471512.302.07411.3077312.362.21411.3077312.362.21411.3481212.402.30811.3885112.442.40211.4490912.502.54211.4490912.502.54211.4894712.542.63611.5096712.562.68311.5298612.582.73011.541.00512.602.777	10.98	464	12.04	1,464		
11.0250312.081,55811.0452212.101,60511.0654112.121,65211.0856112.141,69911.1058012.161,74511.1259912.181,79211.1461912.201,83911.1663812.241,93311.2067712.261,98011.2269612.282,02711.2471512.302,07411.2575412.342,16711.3077312.362,21411.3683112.422,35511.3885112.442,40211.4490912.502,54211.4894712.542,63611.5096712.562,68311.5298612.582,73011.541,00512.602,777	11.00	483	12.06	1,511		
11.0452212.101,605WQV Provided by R.O.W. Porous11.0654112.121,65211.0856112.141,69911.1058012.161,74511.1259912.181,79211.1461912.201,83911.1663812.241,93311.2067712.261,98011.2269612.282,02711.2471512.302,07411.3077312.362,21411.3481212.402,30811.3683112.422,35511.3885112.442,40211.4490912.502,54211.4490912.502,54211.4598612.522,58911.3494712.542,63611.5096712.562,68311.5298612.582,73011.541,00512.602,777	11.02	503	12.08	1.558		
11.0654112.121,65211.0856112.141,69911.1058012.161,74511.1259912.181,79211.1461912.201,83911.1663812.221,88611.1865712.241,93311.2067712.261,98011.2269612.282,02711.2471512.302,07411.2875412.322,12111.3077312.362,21411.3181212.402,30811.3683112.422,35511.3885112.442,40211.4490912.502,54211.4692812.522,58911.4894712.542,63611.5096712.562,68311.5298612.582,73011.541,00512.602,777	11.04	522	12.10	1.605	WQV Provid	ded by R.O.W. Porous
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.06	541	12.12	1.652	Driveway 1	= 1.370 CU. FT.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.08	561	12.14	1.699		.,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.10	580	12.16	1,745		
11.14 619 12.20 $1,839$ 11.16 638 12.22 $1,886$ 11.18 657 12.24 $1,933$ 11.20 677 12.26 $1,980$ 11.22 696 12.28 $2,027$ 11.24 715 12.30 $2,074$ 11.26 735 12.32 $2,121$ 11.28 754 12.34 $2,167$ 11.30 773 12.36 $2,214$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.40 870 12.46 $2,449$ 11.42 889 12.48 $2,496$ 11.44 909 12.50 $2,542$ 11.46 928 12.52 $2,589$ 11.48 947 12.56 $2,683$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	11.12	599	12.18	1,792		
11.16 638 12.22 $1,886$ 11.18 657 12.24 $1,933$ 11.20 677 12.26 $1,980$ 11.22 696 12.28 $2,027$ 11.24 715 12.30 $2,074$ 11.26 735 12.32 $2,121$ 11.28 754 12.34 $2,167$ 11.30 773 12.36 $2,214$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.40 870 12.46 $2,449$ 11.42 889 12.50 $2,542$ 11.44 909 12.50 $2,542$ 11.48 947 12.54 $2,636$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	11.14	619	12.20	1,839		
11.18 657 12.24 $1,933$ 11.20 677 12.26 $1,980$ 11.22 696 12.28 $2,027$ 11.24 715 12.30 $2,074$ 11.26 735 12.32 $2,121$ 11.28 754 12.34 $2,167$ 11.30 773 12.36 $2,214$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.40 870 12.46 $2,449$ 11.42 889 12.48 $2,496$ 11.44 909 12.50 $2,542$ 11.46 928 12.52 $2,589$ 11.48 947 12.54 $2,636$ 11.50 967 12.56 $2,683$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	11.16	638	12.22	1,886		
11.20 677 12.26 $1,980$ 11.22 696 12.28 $2,027$ 11.24 715 12.30 $2,074$ 11.26 735 12.32 $2,121$ 11.28 754 12.34 $2,167$ 11.30 773 12.36 $2,214$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.40 870 12.46 $2,449$ 11.42 889 12.48 $2,496$ 11.44 909 12.50 $2,542$ 11.46 928 12.52 $2,589$ 11.48 947 12.54 $2,636$ 11.50 967 12.56 $2,683$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	11.18	657	12.24	1,933		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.20	677	12.26	1,980		
11.24 715 12.30 $2,074$ 11.26 735 12.32 $2,121$ 11.28 754 12.34 $2,167$ 11.30 773 12.36 $2,214$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.40 870 12.46 $2,449$ 11.42 889 12.48 $2,496$ 11.44 909 12.50 $2,542$ 11.46 928 12.52 $2,589$ 11.48 947 12.54 $2,636$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	11.22	696	12.28	2,027		
11.26 735 12.32 $2,121$ 11.28 754 12.34 $2,167$ 11.30 773 12.36 $2,214$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.40 870 12.46 $2,449$ 11.42 889 12.48 $2,496$ 11.44 909 12.50 $2,542$ 11.46 928 12.52 $2,589$ 11.48 947 12.54 $2,636$ 11.50 967 12.56 $2,683$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	11.24	715	12.30	2,074		
11.28 754 12.34 $2,167$ 11.30 773 12.36 $2,214$ 11.32 793 12.38 $2,261$ 11.34 812 12.40 $2,308$ 11.36 831 12.42 $2,355$ 11.38 851 12.44 $2,402$ 11.40 870 12.46 $2,449$ 11.42 889 12.48 $2,496$ 11.44 909 12.50 $2,542$ 11.46 928 12.52 $2,589$ 11.48 947 12.54 $2,636$ 11.50 967 12.56 $2,683$ 11.52 986 12.58 $2,730$ 11.54 $1,005$ 12.60 $2,777$	11.26	735	12.32	2,121		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.28	754	12.34	2,167		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.30	773	12.36	2,214		
	11.32	793	12.38	2,261		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.34	812	12.40	2,308		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.36	831	12.42	2,355		
	11.38	851	12.44	2,402		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.40	870	12.46	2,449		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.42	889	12.48	2,496		
11.4692812.522,58911.4894712.542,63611.5096712.562,68311.5298612.582,73011.541,00512.602,777	11.44	909	12.50	2,542		
11.4894712.542,63611.5096712.562,68311.5298612.582,73011.541,00512.602,777	11.46	928	12.52	2,589		
11.50 967 12.56 2,683 11.52 986 12.58 2,730 11.54 1,005 12.60 2,777	11.48	947	12.54	2,636		
11.52 986 12.58 2,730 11.54 1,005 12.60 2,777	11.50	967	12.56	2,683		
11.54 1,005 12.60 2,777	11.52	986	12.58	2,730		
	11.54	1,005	12.60	2,111		

Stage-Area-Storage for Pond RD2: R.O.W. Porous Driveway 2

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
8.00	0	9.06	474	10.12	1.471
8.02	9	9.08	483	10.14	1.495
8.04	18	9.10	492	10.16	1,520
8.06	27	9.12	501	10.18	1,545
8.08	36	9.14	510	10.20	1,569
8.10	45	9.16	519	10.22	1,593
8.12	54	9.18	527	10.24	1,618
8.14	63	9.20	533	10.26	1,642
8.16	72	9.22	540	10.28	1,666
8.18	80	9.24	547	10.30	1,689
8.20	89	9.20	553	10.32	1,713
0.22	90 107	9.20	500	10.34	1,750
8.24	107	9.30	574	10.30	1,700
8.28	125	9.32	580	10.30	1,705
8.30	134	9.36	587	10.42	1,829
8.32	143	9.38	594	10.44	1.852
8.34	152	9.40	600	10.46	1,875
8.36	161	9.42	607	10.48	1,897
8.38	170	9.44	614	10.50	1,920
8.40	179	9.46	620		
8.42	188	9.48	627		
8.44	197	9.50	634		
8.46	206	9.52	663		
8.48	215	9.54	692		
8.50	224	9.50	740		
0.0Z 8.54	200	9.50	749		
8 56	241	9.00	806	WQV Pr	ovided by R.O.W. Porous
8.58	259	9.64	834	Drivewa	y 2 = 634 CU. FT.
8.60	268	9.66	862	·	
8.62	277	9.68	890		
8.64	286	9.70	918		
8.66	295	9.72	946		
8.68	304	9.74	973		
8.70	313	9.76	1,000		
8.72	322	9.78	1,028		
8.74	331	9.80	1,055		
8.76	340	9.82	1,082		
0.70	349 359	9.04	1,109		
8.82	367	9.00	1,133		
8 84	376	9.90	1 188		
8.86	385	9.92	1,215		
8.88	394	9.94	1,241		
8.90	402	9.96	1,267		
8.92	411	9.98	1,293		
8.94	420	10.00	1,319		
8.96	429	10.02	1,344		
8.98	438	10.04	1,370		
9.00	447	10.06	1,395		
9.02	450	10.08 10.10	1,420		
9.04	400	10.10	1,440		

	72-Hour Draw Down Calculations								
Project:	40 Signal Road	Project #:	2008	Date:	1/27/2023				
Location:	Stamford, CT	By:	SPC	Checked:	ТМ				
	Porous Driveway Draw Do	wn Calcula	ation						
	Lat 1 Damana Driveryov (1D			-					
	Lot I Porous Driveway (IP	<u>D)</u>							
	Surface Area of Infiltration System (SA)	300	ft ²						
	Volume of Storage of Infiltration System (VS)	166.0	ft ³						
	Infiltration Rate (IR)	0.52	in/hr ^c						
	Theoretical Water Column Height	6.64	in ^a						
	Time of Draw Down	12.77	hr ^b						
	Lot 2 Porous Driveway (2P	<u>'D)</u>							
	Surface Area of Infiltration System (SA)	650	ft ²						
	Volume of Storage of Infiltration System (VS)	322.0	ft ³						
	Infiltration Rate (IR)	0.52	in/hr ^c						
	Theoretical Water Column Height	5.94	in ^a						
	Time of Draw Down	11.43	hr ^b						
				-					
	Lot 3 Porous Driveway (3P	<u>'D)</u>	1						
	Surface Area of Infiltration System (SA)	650	ft ²						
	Volume of Storage of Infiltration System (VS)	322.0	ft ³						
	Infiltration Rate (IR)	0.52	in/hr ^c						

Lot 4 Porous Driveway (4PD)							
Surface Area of Infiltration System (SA)	1,070	ft ²					
Volume of Storage of Infiltration System (VS)	536.0	ft ³					
Infiltration Rate (IR)	0.52	in/hr ^c					
Theoretical Water Column Height	6.01	in ^a					
Time of Draw Down	11.56	hr ^b					

^a Theoretical Water Column Height (WCH) = VS/SA*12

^b Time of Draw Down = WCH/IR

Theoretical Water Column Height

Time of Draw Down

^c Infiltration Rate (IR) taken from the City of Stamford Stormwater Drainage Manual Table 5-1 for NRCS HSG-B Loam.

5.94 in^a

11.43 hr^b

72-Hour Draw Down Calculations									
Project #:	2008	Date:	1/27/2023						
By:	SPC	Checked:	ТМ						
Permeable Patio Draw Down Calculation									
<u>P)</u>									
1,248	ft ²								
548.0	ft ³								
0.52	in/hr ^c								
5.27	in ^a								
10.13	hr ^b								
2		_							
<u>P)</u>									
1,265	ft ²								
557.0	ft ³								
0.52	in/hr ^c								
5.28	in ^a								
10.16	hr ^b								
P)		- -							
	Calculatic Project #: By: vn Calcula P) 1,248 548.0 0.52 5.27 10.13 P) 1,265 557.0 0.52 5.28 10.16	Project #: 2008 By: SPC wn Calculation P) 1,248 ft ² 548.0 ft ³ 0.52 in/hr ^c 5.27 in ^a 10.13 hr ^b P) 1,265 ft ² 557.0 10.52 in/hr ^c 5.28 in ^a 10.16 hr ^b	Salculations Project #: 2008 Date: By: SPC Checked: N Checked: N Checked: N Checked: N Checked: N Checked: 2 1,248 ft ² 548.0 ft ³ 0.52 in/hr ^c 5.27 in ^a 10.13 hr ^b P) 1,265 ft ² 557.0 ft ³ 0.52 in/hr ^c 5.28 in ^a 10.16 hr ^b						

Lot 3 Permeable Patio (3PP)							
Surface Area of Infiltration System (SA)	1,265	ft ²					
Volume of Storage of Infiltration System (VS)	557.0	ft ³					
Infiltration Rate (IR)	0.52	in/hr ^c					
Theoretical Water Column Height	5.28	in ^a					
Time of Draw Down	10.16	hr ^b					

Lot 4 Permeable Patio (4PP)							
Surface Area of Infiltration System (SA)	1,086	ft ²					
Volume of Storage of Infiltration System (VS)	458.0	ft ³					
Infiltration Rate (IR)	0.52	in/hr ^c					
Theoretical Water Column Height	5.06	in ^a					
Time of Draw Down	9.73	hr ^b					

^a Theoretical Water Column Height (WCH) = VS/SA*12

^b Time of Draw Down = WCH/IR

^c Infiltration Rate (IR) taken from the City of Stamford Stormwater Drainage Manual Table 5-1 for NRCS HSG-B Loam.

72-Hour Draw Down Calculations									
Project: 40 Signal Road	Project	:# : 2008	Date:	1/27/2023					
Location: Stamford, CT	By:	SPC	Checked:	ТМ					
R.O.W. Porous Driveway Dr	R.O.W. Porous Driveway Draw Down Calculation								
R.O.W. Porous Driveway 1	(RD1)								
Surface Area of Infiltration System (SA)	2,4	17 ft ²							
Volume of Storage of Infiltration System (V	(S) 1,37	0.0 ft ³							
Infiltration Rate (IR)	0	.52 in/hr ^c							

6.80 in^a

13.08 hr^b

R.O.W. Porous Driveway 2 (RD2)					
Surface Area of Infiltration System (SA)	1,118	ft ²			
Volume of Storage of Infiltration System (VS)	634.0	ft ³			
Infiltration Rate (IR)	0.52	in/hr ^c			
Theoretical Water Column Height	6.81	in ^a			
Time of Draw Down	13.09	hr ^b			

Theoretical Water Column Height

Time of Draw Down

^a Theoretical Water Column Height (WCH) = VS/SA*12

^b Time of Draw Down = WCH/IR

^c Infiltration Rate (IR) taken from the City of Stamford Stormwater Drainage Manual Table 5-1 for NRCS HSG-B Loam.

Appendix E

HydroCAD Report

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type III 24-hr		Default	24.00	1	2.93	2
2	2-Year	Type III 24-hr		Default	24.00	1	3.55	2
3	5-Year	Type III 24-hr		Default	24.00	1	4.57	2
4	10-Year	Type III 24-hr		Default	24.00	1	5.41	2
5	25-Year	Type III 24-hr		Default	24.00	1	6.57	2
6	50-Year	Type III 24-hr		Default	24.00	1	7.43	2
7	100-Year	Type III 24-hr		Default	24.00	1	8.35	2

Rainfall Events Listing

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
61.00	Lot 1 >75% Grass cover, Good, HSG B (1PD, N, S, SB)
68.00	Lot 1 Beach (S, SB)
98.00	Lot 1 Impervious (1PD, 1PP, N, S, SB)
100.00	Lot 1 Pool (1PP)
61.00	Lot 2 >75% Grass cover, Good, HSG B (2PD, N, S, SB)
68.00	Lot 2 Beach (S, SB)
98.00	Lot 2 Impervious (2PD, 2PP, N, S, SB)
100.00	Lot 2 Pool (2PP)
61.00	Lot 3 >75% Grass cover, Good, HSG B (3PD, N, S, SB)
68.00	Lot 3 Beach (S, SB)
98.00	Lot 3 Impervious (3PD, 3PP, N, S, SB)
100.00	Lot 3 Pool (3PP)
61.00	Lot 4 >75% Grass cover, Good, HSG B (4PD, N, NB, S, SB)
68.00	Lot 4 Beach (S, SB)
98.00	Lot 4 Impervious (4PD, 4PP, N, S, SB)
100.00	Lot 4 Pool (4PP)
61.00	R.O.W. >75% Grass cover, Good, HSG B (1PD, 2PD, 3PD, N, NB, RPD1,
	RPD2, S, SB)
98.00	R.O.W. Impervious (1PD, 2PD, 3PD, N, NB, RPD1, RPD2, SB)
73.80	TOTAL AREA
	CN 61.00 68.00 98.00 100.00 61.00 68.00 98.00 100.00 61.00 68.00 98.00 100.00 61.00 68.00 98.00 100.00 61.00 98.00 73.80

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroC	AD Software Solutions	Type III 24-hr	1-Year Rainfall=2.93" Printed 1/27/2023 Page 4
Time span=0.00-2	24.00 hrs, dt=0.03 hrs	, 801 points	method
Runoff by SCS TR-2	20 method, UH=SCS,	Weighted-CN	
Reach routing by Stor-Ind+Trar	ns method - Pond ro	uting by Stor-Inc	
Subcatchment 1PD: Lot 1 Porous Driveway	Runoff Area=2,664 sf	85.62% Impervi	ous Runoff Depth>2.16"
	Tc=5.	0 min CN=92.68	Runoff=0.16 cfs 479 cf
Subcatchment 1PP: Lot 1 Porous Patio	Runoff Area=2,956 sf	100.00% Impervi	ous Runoff Depth>2.75"
	Tc=5.	0 min CN=98.46	6 Runoff=0.20 cfs 677 cf
Subcatchment 2PD: Lot 2 Porous Driveway	Runoff Area=2,875 sf	82.09% Impervi	ous Runoff Depth>2.04"
	Tc=5.	0 min CN=91.37	′Runoff=0.16 cfs 488 cf
Subcatchment 2PP: Lot 2 Porous Patio	Runoff Area=2,956 sf	100.00% Impervi	ous Runoff Depth>2.75"
	Tc=5.	0 min CN=98.46	Runoff=0.20 cfs 677 cf
Subcatchment 3PD: Lot 3 Porous Driveway	Runoff Area=3,030 sf	81.09% Impervi	ous Runoff Depth>2.00"
	Tc=5.	0 min CN=91.00	Runoff=0.17 cfs 506 cf
Subcatchment 3PP: Lot 3 Porous Patio	Runoff Area=2,956 sf	100.00% Impervi	ous Runoff Depth>2.75"
	Tc=5.	0 min CN=98.46	Runoff=0.20 cfs 677 cf
Subcatchment 4PD: Lot 4 Porous Driveway	Runoff Area=2,985 sf	89.82% Impervi	ous Runoff Depth>2.30"
	Tc=5.	0 min CN=94.23	Runoff=0.18 cfs 573 cf
Subcatchment 4PP: Lot 4 Porous Patio	Runoff Area=3,073 sf	100.00% Impervi	ous Runoff Depth>2.75"
	Tc=5.	0 min CN=98.44	Runoff=0.21 cfs 703 cf
SubcatchmentN: Ex. North Basin	Runoff Area=35,355 sf	57.19% Impervi	ous Runoff Depth>1.33"
	Tc=5.0	min CN=82.16	Runoff=1.30 cfs 3,928 cf
Subcatchment NB: North Bypass	Runoff Area=3,209 s	of 8.41% Impervi	ous Runoff Depth>0.44"
	Tc=5.	0 min CN=64.11	Runoff=0.03 cfs 118 cf
Subcatchment RPD1: R.O.W. Porous	Runoff Area=3,517 sf	77.77% Impervi	ous Runoff Depth>1.90"
	Tc=5.	0 min CN=89.77	′ Runoff=0.18 cfs 557 cf
Subcatchment RPD2: R.O.W. Porous	Runoff Area=5,029 sf	76.26% Impervi	ous Runoff Depth>1.85"
	Tc=5.	0 min CN=89.22	Runoff=0.26 cfs 777 cf
Subcatchment S: Ex. South Basin	Runoff Area=66,249 sf	10.54% Impervi	ous Runoff Depth>0.57"
Flow Length=100' Slop	be=0.0080 '/' Tc=19.8	min CN=67.46	Runoff=0.54 cfs 3,121 cf
Subcatchment SB: South Bypass	Runoff Area=66,354 s	sf 7.85% Impervi	ous Runoff Depth>0.53"
	v Length=140' Tc=9.0	min CN=66.46	Runoff=0.64 cfs 2,919 cf
Pond 1D: Lot 1 Porous Driveway	Peak Elev=9.8	8' Storage=179 c	of Inflow=0.16 cfs 479 cf Outflow=0.14 cfs 312 cf
Pond 1P: Lot 1 Permeable Patio	Peak Elev=9.0	0' Storage=548 c	of Inflow=0.20 cfs 677 cf Outflow=0.01 cfs 129 cf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD So	T	ype III 24-hr	1-Year Rainfall Printed 1/2	=2.93" 7/2023 Page 5
				<u>ugo o</u>
Pond 2D: Lot 2 Porous Driveway	Peak Elev=9.83'	Storage=328 c	of Inflow=0.16 cfs Outflow=0.01 cfs	488 cf 165 cf
Pond 2P: Lot 2 Permeable Patio	Peak Elev=8.75'	Storage=557 c	of Inflow=0.20 cfs Outflow=0.01 cfs	677 cf 120 cf
Pond 3D: Lot 3 Porous Driveway	Peak Elev=9.83'	Storage=329 c	of Inflow=0.17 cfs Outflow=0.01 cfs	506 cf 183 cf
Pond 3P: Lot 3 Permeable Patio	Peak Elev=8.75'	Storage=557 c	of Inflow=0.20 cfs Outflow=0.01 cfs	677 cf 120 cf
Pond 4D: Lot 4 Porous Driveway	Peak Elev=9.00'	Storage=536 c	of Inflow=0.18 cfs Outflow=0.00 c	573 cf fs 37 cf
Pond 4P: Lot 4 Permeable Patio	Peak Elev=8.76'	Storage=461 c	of Inflow=0.21 cfs Outflow=0.05 cfs	703 cf 244 cf
Pond RD1: R.O.W. Porous Driveway 1 Primary=0.00 cfs 0 cf Secondary=0	Peak Elev=11.08' .00 cfs_0 cf_Terti	Storage=557 c ary=0.00 cfs_0	cf Inflow=0.18 cfs cf Outflow=0.00	557 cf cfs 0 cf
Pond RD2: R.O.W. Porous Driveway 2	Peak Elev=9.50'	Storage=635 c	of Inflow=0.26 cfs Outflow=0.01 cfs	777 cf 142 cf
Link E-LIS: Ex. Long Island Sound		F	Inflow=1.44 cfs Primary=1.44 cfs	7,049 cf 7,049 cf
Link E-SS: Ex. Storm Sewer		F	Inflow=1.30 cfs Primary=1.30 cfs	3,928 cf 3,928 cf
Link P-LIS: Pr. Long Island Sound		F	Inflow=0.79 cfs Primary=0.79 cfs	4,490 cf 4,490 cf
Link P-SS: Pr. Storm Sewer			Inflow=0.03 cfs Primary=0.03 cfs	261 cf 261 cf

Total Runoff Area = 203,208 sf Runoff Volume = 16,200 cf Average Runoff Depth = 0.96" 70.00% Pervious = 142,236 sf 30.00% Impervious = 60,972 sf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 Hyd	"Type III 24-hr 2-Year Rainfall=3.55 Printed 1/27/2023 IroCAD Software Solutions LLC Page 56
Time span=0.0 Runoff by SCS T Reach routing by Stor-Ind+ī	00-24.00 hrs, dt=0.03 hrs, 801 points R-20 method, UH=SCS, Weighted-CN Frans method - Pond routing by Stor-Ind method
Subcatchment 1PD: Lot 1 Porous Drive	vay Runoff Area=2,664 sf 85.62% Impervious Runoff Depth>2.75" Tc=5.0 min CN=92.68 Runoff=0.20 cfs 610 cf
Subcatchment 1PP: Lot 1 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>3.37" Tc=5.0 min CN=98.46 Runoff=0.24 cfs 829 cf
Subcatchment 2PD: Lot 2 Porous Drive	vay Runoff Area=2,875 sf 82.09% Impervious Runoff Depth>2.62" Tc=5.0 min CN=91.37 Runoff=0.20 cfs 628 cf
Subcatchment 2PP: Lot 2 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>3.37" Tc=5.0 min CN=98.46 Runoff=0.24 cfs 829 cf
Subcatchment 3PD: Lot 3 Porous Drivev	vay Runoff Area=3,030 sf 81.09% Impervious Runoff Depth>2.59" Tc=5.0 min CN=91.00 Runoff=0.21 cfs 653 cf
Subcatchment 3PP: Lot 3 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>3.37" Tc=5.0 min CN=98.46 Runoff=0.24 cfs 829 cf
Subcatchment 4PD: Lot 4 Porous Drivev	vay Runoff Area=2,985 sf 89.82% Impervious Runoff Depth>2.91" Tc=5.0 min CN=94.23 Runoff=0.23 cfs 723 cf
Subcatchment 4PP: Lot 4 Porous Patio	Runoff Area=3,073 sf 100.00% Impervious Runoff Depth>3.36" Tc=5.0 min CN=98.44 Runoff=0.25 cfs 862 cf
SubcatchmentN: Ex. North Basin	Runoff Area=35,355 sf 57.19% Impervious Runoff Depth>1.83" Tc=5.0 min CN=82.16 Runoff=1.79 cfs 5,405 cf
Subcatchment NB: North Bypass	Runoff Area=3,209 sf 8.41% Impervious Runoff Depth>0.73" Tc=5.0 min CN=64.11 Runoff=0.05 cfs 196 cf
Subcatchment RPD1: R.O.W. Porous	Runoff Area=3,517 sf 77.77% Impervious Runoff Depth>2.47" Tc=5.0 min CN=89.77 Runoff=0.24 cfs 724 cf
Subcatchment RPD2: R.O.W. Porous	Runoff Area=5,029 sf 76.26% Impervious Runoff Depth>2.42" Tc=5.0 min CN=89.22 Runoff=0.33 cfs 1,015 cf
Subcatchment S: Ex. South Basin Flow Length=100'	Runoff Area=66,249 sf 10.54% Impervious Runoff Depth>0.90" Slope=0.0080 '/' Tc=19.8 min CN=67.46 Runoff=0.96 cfs 4,952 cf
Subcatchment SB: South Bypass	Runoff Area=66,354 sf 7.85% Impervious Runoff Depth>0.85" Flow Length=140' Tc=9.0 min CN=66.46 Runoff=1.18 cfs 4,693 cf
Pond 1D: Lot 1 Porous Driveway	Peak Elev=9.89' Storage=182 cf Inflow=0.20 cfs 610 cf Outflow=0.19 cfs 444 cf
Pond 1P: Lot 1 Permeable Patio	Peak Elev=9.01' Storage=550 cf Inflow=0.24 cfs 829 cf Outflow=0.05 cfs 282 cf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD S	Type III 24-hr 2-Year Rainfall=3.55" Printed 1/27/2023 oftware Solutions LLC Page 57
Pond 2D: Lot 2 Porous Driveway	Peak Elev=9.86' Storage=336 cf Inflow=0.20 cfs 628 cf Outflow=0.07 cfs 305 cf
Pond 2P: Lot 2 Permeable Patio	Peak Elev=8.75' Storage=558 cf Inflow=0.24 cfs 829 cf Outflow=0.05 cfs 272 cf
Pond 3D: Lot 3 Porous Driveway	Peak Elev=9.86' Storage=337 cf Inflow=0.21 cfs 653 cf Outflow=0.08 cfs 329 cf
Pond 3P: Lot 3 Permeable Patio	Peak Elev=8.75' Storage=558 cf Inflow=0.24 cfs 829 cf Outflow=0.05 cfs 272 cf
Pond 4D: Lot 4 Porous Driveway	Peak Elev=9.00' Storage=537 cf Inflow=0.23 cfs 723 cf Outflow=0.01 cfs 187 cf
Pond 4P: Lot 4 Permeable Patio	Peak Elev=8.76' Storage=463 cf Inflow=0.25 cfs 862 cf Outflow=0.14 cfs 405 cf
Pond RD1: R.O.W. Porous Driveway 1 Primary=0.00 cfs 0 cf Secondary=	Peak Elev=11.25' Storage=724 cf Inflow=0.24 cfs 724 cf 0.00 cfs 0 cf Tertiary=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf
Pond RD2: R.O.W. Porous Driveway 2	Peak Elev=9.50' Storage=638 cf Inflow=0.33 cfs 1,015 cf Outflow=0.03 cfs 380 cf
Link E-LIS: Ex. Long Island Sound	Inflow=2.16 cfs 10,357 cf Primary=2.16 cfs 10,357 cf
Link E-SS: Ex. Storm Sewer	Inflow=1.79 cfs 5,405 cf Primary=1.79 cfs 5,405 cf
Link P-LIS: Pr. Long Island Sound	Inflow=1.51 cfs 7,766 cf Primary=1.51 cfs 7,766 cf
Link P-SS: Pr. Storm Sewer	Inflow=0.05 cfs 577 cf Primary=0.05 cfs 577 cf

Total Runoff Area = 203,208 sf Runoff Volume = 22,950 cf Average Runoff Depth = 1.36" 70.00% Pervious = 142,236 sf 30.00% Impervious = 60,972 sf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 Hy	"Type III 24-hr 5-Year Rainfall=4.57 Printed 1/27/2023 droCAD Software Solutions LLC Page 108
Time span=0. Runoff by SCS Reach routing by Stor-Ind+	00-24.00 hrs, dt=0.03 hrs, 801 points TR-20 method, UH=SCS, Weighted-CN Trans method - Pond routing by Stor-Ind method
Subcatchment 1PD: Lot 1 Porous Drive	way Runoff Area=2,664 sf 85.62% Impervious Runoff Depth>3.74" Tc=5.0 min CN=92.68 Runoff=0.26 cfs 830 cf
Subcatchment 1PP: Lot 1 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>4.39" Tc=5.0 min CN=98.46 Runoff=0.31 cfs 1,080 cf
Subcatchment 2PD: Lot 2 Porous Drive	way Runoff Area=2,875 sf 82.09% Impervious Runoff Depth>3.60" Tc=5.0 min CN=91.37 Runoff=0.28 cfs 863 cf
Subcatchment 2PP: Lot 2 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>4.39" Tc=5.0 min CN=98.46 Runoff=0.31 cfs 1,080 cf
Subcatchment 3PD: Lot 3 Porous Drive	way Runoff Area=3,030 sf 81.09% Impervious Runoff Depth>3.56" Tc=5.0 min CN=91.00 Runoff=0.29 cfs 900 cf
Subcatchment 3PP: Lot 3 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>4.39" Tc=5.0 min CN=98.46 Runoff=0.31 cfs 1,080 cf
Subcatchment 4PD: Lot 4 Porous Drive	way Runoff Area=2,985 sf 89.82% Impervious Runoff Depth>3.91" Tc=5.0 min CN=94.23 Runoff=0.30 cfs 972 cf
Subcatchment 4PP: Lot 4 Porous Patio	Runoff Area=3,073 sf 100.00% Impervious Runoff Depth>4.38" Tc=5.0 min CN=98.44 Runoff=0.33 cfs 1,122 cf
Subcatchment N: Ex. North Basin	Runoff Area=35,355 sf 57.19% Impervious Runoff Depth>2.71" Tc=5.0 min CN=82.16 Runoff=2.65 cfs 7,984 cf
Subcatchment NB: North Bypass	Runoff Area=3,209 sf 8.41% Impervious Runoff Depth>1.31" Tc=5.0 min CN=64.11 Runoff=0.11 cfs 351 cf
Subcatchment RPD1: R.O.W. Porous	Runoff Area=3,517 sf 77.77% Impervious Runoff Depth>3.44" Tc=5.0 min CN=89.77 Runoff=0.33 cfs 1,007 cf
Subcatchment RPD2: R.O.W. Porous	Runoff Area=5,029 sf 76.26% Impervious Runoff Depth>3.38" Tc=5.0 min CN=89.22 Runoff=0.46 cfs 1,417 cf
Subcatchment S: Ex. South Basin Flow Length=100'	Runoff Area=66,249 sf 10.54% Impervious Runoff Depth>1.53" Slope=0.0080 '/' Tc=19.8 min CN=67.46 Runoff=1.76 cfs 8,471 cf
Subcatchment SB: South Bypass	Runoff Area=66,354 sf 7.85% Impervious Runoff Depth>1.47" Flow Length=140' Tc=9.0 min CN=66.46 Runoff=2.22 cfs 8,127 cf
Pond 1D: Lot 1 Porous Driveway	Peak Elev=9.90' Storage=185 cf Inflow=0.26 cfs 830 cf Outflow=0.26 cfs 664 cf
Pond 1P: Lot 1 Permeable Patio	Peak Elev=9.02' Storage=555 cf Inflow=0.31 cfs 1,080 cf Outflow=0.29 cfs 537 cf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD	Type III 24-hr 5-Year Rainfall=4.57" Printed 1/27/2023 Software Solutions LLC Page 109
Pond 2D: Lot 2 Porous Driveway	Peak Elev=9.90' Storage=347 cf Inflow=0.28 cfs 863 cf Outflow=0.24 cfs 538 cf
Pond 2P: Lot 2 Permeable Patio	Peak Elev=8.77' Storage=563 cf Inflow=0.31 cfs 1,080 cf Outflow=0.22 cfs 526 cf
Pond 3D: Lot 3 Porous Driveway	Peak Elev=9.91' Storage=349 cf Inflow=0.29 cfs 900 cf Outflow=0.28 cfs 576 cf
Pond 3P: Lot 3 Permeable Patio	Peak Elev=8.77' Storage=563 cf Inflow=0.31 cfs 1,080 cf Outflow=0.22 cfs 526 cf
Pond 4D: Lot 4 Porous Driveway	Peak Elev=9.01' Storage=541 cf Inflow=0.30 cfs 972 cf Outflow=0.13 cfs 437 cf
Pond 4P: Lot 4 Permeable Patio	Peak Elev=8.77' Storage=467 cf Inflow=0.33 cfs 1,122 cf Outflow=0.32 cfs 660 cf
Pond RD1: R.O.W. Porous Driveway 1 Primary=0.00 cfs 0 cf Secondary	Peak Elev=11.54' Storage=1,007 cf Inflow=0.33 cfs 1,007 cf =0.00 cfs 0 cf Tertiary=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf
Pond RD2: R.O.W. Porous Driveway 2	Peak Elev=9.52' Storage=662 cf Inflow=0.46 cfs 1,417 cf Outflow=0.22 cfs 784 cf
Link E-LIS: Ex. Long Island Sound	Inflow=3.45 cfs 16,454 cf Primary=3.45 cfs 16,454 cf
Link E-SS: Ex. Storm Sewer	Inflow=2.65 cfs 7,984 cf Primary=2.65 cfs 7,984 cf
Link P-LIS: Pr. Long Island Sound	Inflow=3.99 cfs 13,725 cf Primary=3.99 cfs 13,725 cf
Link P-SS: Pr. Storm Sewer	Inflow=0.29 cfs 1,135 cf Primary=0.29 cfs 1,135 cf

Total Runoff Area = 203,208 sf Runoff Volume = 35,285 cf Average Runoff Depth = 2.08" 70.00% Pervious = 142,236 sf 30.00% Impervious = 60,972 sf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 Hydro	"Type III 24-hr 10-Year Rainfall=5.41 Printed 1/27/2023 CAD Software Solutions LLC Page 160
Time span=0.00- Runoff by SCS TR- Reach routing by Stor-Ind+Tra	-24.00 hrs, dt=0.03 hrs, 801 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment 1PD: Lot 1 Porous Drivewa	y Runoff Area=2,664 sf 85.62% Impervious Runoff Depth>4.56" Tc=5.0 min CN=92.68 Runoff=0.32 cfs 1,013 cf
Subcatchment 1PP: Lot 1 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>5.22" Tc=5.0 min CN=98.46 Runoff=0.37 cfs 1,287 cf
Subcatchment 2PD: Lot 2 Porous Drivewa	y Runoff Area=2,875 sf 82.09% Impervious Runoff Depth>4.42" Tc=5.0 min CN=91.37 Runoff=0.33 cfs 1,059 cf
Subcatchment 2PP: Lot 2 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>5.22" Tc=5.0 min CN=98.46 Runoff=0.37 cfs 1,287 cf
Subcatchment 3PD: Lot 3 Porous Drivewa	y Runoff Area=3,030 sf 81.09% Impervious Runoff Depth>4.38" Tc=5.0 min CN=91.00 Runoff=0.35 cfs 1,105 cf
Subcatchment 3PP: Lot 3 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>5.22" Tc=5.0 min CN=98.46 Runoff=0.37 cfs 1,287 cf
Subcatchment 4PD: Lot 4 Porous Drivewa	y Runoff Area=2,985 sf 89.82% Impervious Runoff Depth>4.74" Tc=5.0 min CN=94.23 Runoff=0.36 cfs 1,178 cf
Subcatchment 4PP: Lot 4 Porous Patio	Runoff Area=3,073 sf 100.00% Impervious Runoff Depth>5.22" Tc=5.0 min CN=98.44 Runoff=0.39 cfs 1,337 cf
Subcatchment N: Ex. North Basin	Runoff Area=35,355 sf 57.19% Impervious Runoff Depth>3.46" Tc=5.0 min CN=82.16 Runoff=3.38 cfs 10,198 cf
Subcatchment NB: North Bypass	Runoff Area=3,209 sf 8.41% Impervious Runoff Depth>1.86" Tc=5.0 min CN=64.11 Runoff=0.16 cfs 497 cf
Subcatchment RPD1: R.O.W. Porous	Runoff Area=3,517 sf 77.77% Impervious Runoff Depth>4.25" Tc=5.0 min CN=89.77 Runoff=0.40 cfs 1.244 cf
Subcatchment RPD2: R.O.W. Porous	Runoff Area=5,029 sf 76.26% Impervious Runoff Depth>4.19" Tc=5.0 min CN=89.22 Runoff=0.56 cfs 1.754 cf
Subcatchment S: Ex. South Basin Flow Length=100' Slo	Runoff Area=66,249 sf 10.54% Impervious Runoff Depth>2.12" pe=0.0080 '/' Tc=19.8 min CN=67.46 Runoff=2.50 cfs 11.715 cf
Subcatchment SB: South Bypass	Runoff Area=66,354 sf 7.85% Impervious Runoff Depth>2.05" v Length=140' Tc=9.0 min CN=66.46 Runoff=3.20 cfs 11.312 cf
Pond 1D: Lot 1 Porous Driveway	Peak Elev=9.91' Storage=188 cf Inflow=0.32 cfs 1,013 cf
Pond 1P: Lot 1 Permeable Patio	Peak Elev=9.02' Storage=557 cf Inflow=0.37 cfs 1,287 cf Outflow=0.37 cfs 745 cf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc.	7	ype III 24-hr	10-Year Rainfall=5.41" Printed 1/27/2023
Hydrocade 10.10-08 S/1106721 @ 2020 Hydrocad 3	onware Solutions		Page 161
Pond 2D: Lot 2 Porous Driveway	Peak Elev=9.91'	Storage=351 cl	Inflow=0.33 cfs 1,059 cf Outflow=0.33 cfs 734 cf
Pond 2P: Lot 2 Permeable Patio	Peak Elev=8.77'	Storage=566 cf	¹ Inflow=0.37 cfs 1,287 cf Outflow=0.37 cfs 729 cf
Pond 3D: Lot 3 Porous Driveway	Peak Elev=9.91'	Storage=352 cf	¹ Inflow=0.35 cfs 1,105 cf Outflow=0.34 cfs 780 cf
Pond 3P: Lot 3 Permeable Patio	Peak Elev=8.77'	Storage=566 ct	Inflow=0.37 cfs 1,287 cf Outflow=0.37 cfs 729 cf
Pond 4D: Lot 4 Porous Driveway	Peak Elev=9.03'	Storage=546 ct	Inflow=0.36 cfs 1,178 cf Outflow=0.33 cfs 634 cf
Pond 4P: Lot 4 Permeable Patio	Peak Elev=8.78'	Storage=468 cl	Inflow=0.39 cfs 1,337 cf Outflow=0.38 cfs 876 cf
Pond RD1: R.O.W. Porous Driveway 1 Primary=0.00 cfs 0 cf Secondary=	eak Elev=11.83' S 0.00 cfs 0 cf Te	Storage=1,244 ct rtiary=0.00 cfs 0	Inflow=0.40 cfs 1,244 cf cf Outflow=0.00 cfs 0 cf
Pond RD2: R.O.W. Porous Driveway 2	Peak Elev=9.53'	Storage=683 cl	Inflow=0.56 cfs 1,754 cf Outflow=0.49 cfs 1,122 cf
Link E-LIS: Ex. Long Island Sound		F	Inflow=4.58 cfs 21,913 cf Primary=4.58 cfs 21,913 cf
Link E-SS: Ex. Storm Sewer		F	Inflow=3.38 cfs 10,198 cf Primary=3.38 cfs 10,198 cf
Link P-LIS: Pr. Long Island Sound		F	Inflow=6.29 cfs 19,004 cf Primary=6.29 cfs 19,004 cf
Link P-SS: Pr. Storm Sewer			Inflow=0.64 cfs 1,619 cf Primary=0.64 cfs 1,619 cf

Total Runoff Area = 203,208 sf Runoff Volume = 46,273 cf Average Runoff Depth = 2.73" 70.00% Pervious = 142,236 sf 30.00% Impervious = 60,972 sf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc.	Type III 24-hr 25-Year Rainfall=6.57" Printed 1/27/2023
Time span=0.00 Runoff by SCS TR Reach routing by Stor-Ind+Tra	0-24.00 hrs, dt=0.03 hrs, 801 points R-20 method, UH=SCS, Weighted-CN rans method - Pond routing by Stor-Ind method
Subcatchment 1PD: Lot 1 Porous Drivewa	ay Runoff Area=2,664 sf 85.62% Impervious Runoff Depth>5.71" Tc=5.0 min CN=92.68 Runoff=0.39 cfs 1,267 cf
Subcatchment 1PP: Lot 1 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>6.38" Tc=5.0 min CN=98.46 Runoff=0.45 cfs 1,572 cf
Subcatchment 2PD: Lot 2 Porous Drivewa	ay Runoff Area=2,875 sf 82.09% Impervious Runoff Depth>5.55" Tc=5.0 min CN=91.37 Runoff=0.41 cfs 1,331 cf
Subcatchment 2PP: Lot 2 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>6.38" Tc=5.0 min CN=98.46 Runoff=0.45 cfs 1,572 cf
Subcatchment 3PD: Lot 3 Porous Drivewa	ay Runoff Area=3,030 sf 81.09% Impervious Runoff Depth>5.51" Tc=5.0 min CN=91.00 Runoff=0.44 cfs 1,392 cf
Subcatchment 3PP: Lot 3 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>6.38" Tc=5.0 min CN=98.46 Runoff=0.45 cfs 1,572 cf
Subcatchment 4PD: Lot 4 Porous Drivewa	ay Runoff Area=2,985 sf 89.82% Impervious Runoff Depth>5.88" Tc=5.0 min CN=94.23 Runoff=0.44 cfs 1,464 cf
Subcatchment 4PP: Lot 4 Porous Patio	Runoff Area=3,073 sf 100.00% Impervious Runoff Depth>6.38" Tc=5.0 min CN=98.44 Runoff=0.47 cfs 1,634 cf
Subcatchment N: Ex. North Basin	Runoff Area=35,355 sf 57.19% Impervious Runoff Depth>4.53" Tc=5.0 min CN=82.16 Runoff=4.38 cfs 13,343 cf
Subcatchment NB: North Bypass	Runoff Area=3,209 sf 8.41% Impervious Runoff Depth>2.69" Tc=5.0 min CN=64.11 Runoff=0.23 cfs 718 cf
Subcatchment RPD1: R.O.W. Porous	Runoff Area=3,517 sf 77.77% Impervious Runoff Depth>5.37" Tc=5.0 min CN=89.77 Runoff=0.50 cfs 1,575 cf
Subcatchment RPD2: R.O.W. Porous	Runoff Area=5,029 sf 76.26% Impervious Runoff Depth>5.31" Tc=5.0 min CN=89.22 Runoff=0.71 cfs 2,225 cf
Subcatchment S: Ex. South Basin Flow Length=100' Slo	
Subcatchment SB: South Bypass	Runoff Area=66,354 sf 7.85% Impervious Runoff Depth>2.91" w Length=140' Tc=9.0 min CN=66.46 Runoff=4.63 cfs 16.089 cf
Pond 1D: Lot 1 Porous Driveway	Peak Elev=9.92' Storage=191 cf Inflow=0.39 cfs 1,313 cf Outflow=0.38 cfs 1,145 cf
Pond 1P: Lot 1 Permeable Patio	Peak Elev=9.03' Storage=558 cf Inflow=0.45 cfs 1,572 cf Outflow=0.44 cfs 1,023 cf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10 10-6a, s/n 08721, © 2020 HydroCAD Si	Type III 24-hr 25-Year Rainfall=6.57" Printed 1/27/2023
Pond 2D: Lot 2 Porous Driveway	Peak Elev=9.92' Storage=354 cf Inflow=0.41 cfs 1,414 cf Outflow=0.41 cfs 1,087 cf
Pond 2P: Lot 2 Permeable Patio	Peak Elev=8.78' Storage=567 cf Inflow=0.45 cfs 1,572 cf Outflow=0.44 cfs 1,017 cf
Pond 3D: Lot 3 Porous Driveway	Peak Elev=9.92' Storage=355 cf Inflow=0.44 cfs 1,392 cf Outflow=0.43 cfs 1,066 cf
Pond 3P: Lot 3 Permeable Patio	Peak Elev=8.78' Storage=567 cf Inflow=0.45 cfs 1,572 cf Outflow=0.44 cfs 1,017 cf
Pond 4D: Lot 4 Porous Driveway	Peak Elev=9.04' Storage=549 cf Inflow=0.44 cfs 1,464 cf Outflow=0.44 cfs 931 cf
Pond 4P: Lot 4 Permeable Patio	Peak Elev=8.78' Storage=469 cf Inflow=0.47 cfs 1,634 cf Outflow=0.46 cfs 1,175 cf
Pond RD1: R.O.W. Porous Driveway 1 Perimary=0.00 cfs 74 cf Secondary=0.00	eak Elev=12.00' Storage=1,372 cf Inflow=0.50 cfs 1,575 cf cfs 46 cf Tertiary=0.01 cfs 83 cf Outflow=0.01 cfs 204 cf
Pond RD2: R.O.W. Porous Driveway 2	Peak Elev=9.54' Storage=696 cf Inflow=0.71 cfs 2,300 cf Outflow=0.68 cfs 1,664 cf
Link E-LIS: Ex. Long Island Sound	Inflow=6.22 cfs 29,903 cf Primary=6.22 cfs 29,903 cf
Link E-SS: Ex. Storm Sewer	Inflow=4.38 cfs 13,343 cf Primary=4.38 cfs 13,343 cf
Link P-LIS: Pr. Long Island Sound	Inflow=8.62 cfs 26,933 cf Primary=8.62 cfs 26,933 cf
Link P-SS: Pr. Storm Sewer	Inflow=0.91 cfs 2,382 cf Primary=0.91 cfs 2,382 cf

Total Runoff Area = 203,208 sf Runoff Volume = 62,314 cf Average Runoff Depth = 3.68" 70.00% Pervious = 142,236 sf 30.00% Impervious = 60,972 sf

Summary for Subcatchment 1PD: Lot 1 Porous Driveway

0.39 cfs @ 12.07 hrs, Volume= Runoff = Routed to Pond 1D : Lot 1 Porous Driveway

1,267 cf, Depth> 5.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descripti	ion			
*	1,846	98.00	Lot 1 Im	Lot 1 Impervious			
*	256	61.00	Lot 1 >7	5% Grass c	cover, Good, HSG B		
*	435	98.00	R.O.W. I	mpervious			
*	127	61.00	R.O.W. >	R.O.W. >75% Grass cover, Good, HSG B			
	2,664 383 2,281	92.68	Weighted Average 14.38% Pervious Area 85.62% Impervious Area				
T (mir	c Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.	0				Direct Entry,		

Subcatchment 1PD: Lot 1 Porous Driveway

Hydrograph

Summary for Subcatchment 1PP: Lot 1 Porous Patio

Runoff = 0.45 cfs @ 12.07 hrs, Volume= Routed to Pond 1P : Lot 1 Permeable Patio 1,572 cf, Depth> 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descript	ion				
*	2,281	98.00	Lot 1 Im	pervious				
*	675	100.00	Lot 1 Po	ol				
	2,956	98.46	Weighte	Weighted Average				
	2,956		100.00%	100.00% Impervious Area				
Ţ	c Length	Slope	Velocity	Capacity	Description			
(mir	i) (feet)	(ft/ft)	(ft/sec)	(cts)				
5.	0				Direct Entry.			

Subcatchment 1PP: Lot 1 Porous Patio

Summary for Subcatchment 2PD: Lot 2 Porous Driveway

Runoff = 0.41 cfs @ 12.07 hrs, Volume= Routed to Pond 2D : Lot 2 Porous Driveway 1,331 cf, Depth> 5.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descripti	ion				
*	1,944	98.00	Lot 2 Im	pervious				
*	366	61.00	Lot 2 >7	5% Grass c	cover, Good, HSG B			
*	416	98.00	R.O.W. I	mpervious				
*	149	61.00	R.O.W. >	R.O.W. >75% Grass cover, Good, HSG B				
	2,875 515 2,360	91.37	Weighted Average 17.91% Pervious Area 82.09% Impervious Area					
T (mir	c Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.	0				Direct Entry,			

Subcatchment 2PD: Lot 2 Porous Driveway

Summary for Subcatchment 2PP: Lot 2 Porous Patio

Runoff = 0.45 cfs @ 12.07 hrs, Volume= Routed to Pond 2P : Lot 2 Permeable Patio 1,572 cf, Depth> 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descript	ion				
*	2,281	98.00	Lot 2 Im	Lot 2 Impervious				
*	675	100.00	Lot 2 Po	ol				
	2,956	98.46	Weighte	Weighted Average				
	2,956		100.00%	100.00% Impervious Area				
Т	Longth	Slope	Volocity	Canacity	Description			
I C		Siope		Capacity	Description			
(min) (leet)	(11/11)	(It/sec)	(CIS)				
5.0)				Direct Entry.			

Subcatchment 2PP: Lot 2 Porous Patio

Summary for Subcatchment 3PD: Lot 3 Porous Driveway

Runoff = 0.44 cfs @ 12.07 hrs, Volume= Routed to Pond 3D : Lot 3 Porous Driveway 1,392 cf, Depth> 5.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descript	ion				
*	1,894	98.00	Lot 3 Im	pervious				
*	360	61.00	Lot 3 >7	5% Grass c	cover, Good, HSG B			
*	563	98.00	R.O.W. I	mpervious				
*	213	61.00	R.O.W. >	R.O.W. >75% Grass cover, Good, HSG B				
	3,030 573 2,457	91.00	Weighted Average 18.91% Pervious Area 81.09% Impervious Area					
۲ miı)	c Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5	.0				Direct Entry,			

Subcatchment 3PD: Lot 3 Porous Driveway

Summary for Subcatchment 3PP: Lot 3 Porous Patio

Runoff = 0.45 cfs @ 12.07 hrs, Volume= Routed to Pond 3P : Lot 3 Permeable Patio 1,572 cf, Depth> 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descript	ion					
*	2,281	98.00	Lot 3 Im	pervious					
*	675	100.00	Lot 3 Po	ol					
	2,956	98.46	Weighte	Weighted Average					
	2,956		100.00%	100.00% Impervious Area					
Т	c Length	Slope	Velocity	Capacity	Description				
(mir	n) (feet)	(ft/ft)	(ft/sec)	(cfs)					
5.	0				Direct Entry.				

Subcatchment 3PP: Lot 3 Porous Patio

Summary for Subcatchment 4PD: Lot 4 Porous Driveway

Runoff 0.44 cfs @ 12.07 hrs, Volume= = Routed to Pond 4D : Lot 4 Porous Driveway

1,464 cf, Depth> 5.88"

Page 220

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

A	Area (sf)	CN	Descripti	on				
*	2,681	98.00	Lot 4 Imp	pervious				
*	304	61.00	Lot 4 >7	5% Grass o	cover, Good, HSG B			
	2,985	94.23	Weighte	Weighted Average				
	304		10.18% Pervious Area					
	2,681		89.82% Impervious Area					
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0					Direct Entry,			

Subcatchment 4PD: Lot 4 Porous Driveway

Summary for Subcatchment 4PP: Lot 4 Porous Patio

Runoff = 0.47 cfs @ 12.07 hrs, Volume= Routed to Pond 4P : Lot 4 Permeable Patio 1,634 cf, Depth> 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descript	ion				
*	2,398	98.00	Lot 4 Im	pervious				
*	675	100.00	Lot 4 Po	ol				
	3,073	98.44	Weighte	Weighted Average				
	3,073		100.00%	100.00% Impervious Area				
To (min	c Length) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0)				Direct Entry.			

Subcatchment 4PP: Lot 4 Porous Patio

Type III 24-hr 25-Year Rainfall=6.57" Printed 1/27/2023 HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC Page 222

Summary for Subcatchment N: Ex. North Basin

Runoff 4.38 cfs @ 12.07 hrs, Volume= = Routed to Link E-SS : Ex. Storm Sewer

13,343 cf, Depth> 4.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Description					
*	3,994	98.00	Lot 1 Impervious					
*	641	61.00	Lot 1 >75% Grass cover, Good, HSG B					
*	2,542	98.00	Lot 2 Impervious					
*	1,216	61.00	Lot 2 >75% Grass cover, Good, HSG B					
*	422	98.00	Lot 3 Impervious					
*	4,839	61.00	Lot 3 >75% Grass cover, Good, HSG B					
*	2,753	98.00	Lot 4 Impervious					
*	1,623	61.00	Lot 4 >75% Grass cover, Good, HSG B					
*	10,508	98.00	R.O.W. Impervious					
*	6,817	61.00	R.O.W. >75% Grass cover, Good, HSG B					
	35,355	82.16	Weighted Average					
	15,136		42.81% Pervious Area					
	20,219		57.19% Impervious Area					
	Tc Length	Slope	Velocity Capacity Description					

(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	200
5.0					Dire

ect Entry,

Subcatchment N: Ex. North Basin

Summary for Subcatchment NB: North Bypass

Runoff = 0.23 cfs @ 12.08 hrs, Volume= Routed to Link P-SS : Pr. Storm Sewer 718 cf, Depth> 2.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

A	Area (sf)	CN	Descripti	ion				
*	1,137	61.00	Lot 4 >7	5% Grass o	cover, Good, HSG B			
*	270	98.00	R.O.W. I	mpervious				
*	1,802	61.00	R.O.W. >	>75% Gras	s cover, Good, HSG B			
	3,209	64.11	Weighte	Weighted Average				
	2,939		91.59%	91.59% Pervious Area				
	270		8.41% In	8.41% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0					Direct Entry,			

Subcatchment NB: North Bypass

1,575 cf, Depth> 5.37"

Summary for Subcatchment RPD1: R.O.W. Porous Driveway 1

Runoff	=	0.50 cfs @	12.07 hrs,	Volume=
Routed	to Pond	RD1 : R.O.V	V. Porous D	riveway 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Descript	on				
*	2,735	98.00	R.O.W. I	mpervious				
*	782	61.00	R.O.W. >	>75% Gras	s cover, Good, HSG B			
	3,517	89.77	Weighte	Weighted Average				
	782		22.23%	22.23% Pervious Area				
	2,735		77.77% Impervious Area					
Т	c Length	Slope	Velocity	Capacity	Description			
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)				
5.0)				Direct Entry,			

Subcatchment RPD1: R.O.W. Porous Driveway 1

Summary for Subcatchment RPD2: R.O.W. Porous Driveway 2

Runoff = 0.71 cfs @ 12.07 hrs, Volume= 2,225 cf, Depth> 5.31" Routed to Pond RD2 : R.O.W. Porous Driveway 2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

A	vrea (sf)	CN	Description				
*	3,835	98.00	R.O.W. Impervious				
*	1,194	61.00	R.O.W. >75% Grass cover, Good, HSG B				
	5,029	89.22	Weighted Average				
	1,194		23.74% Pervious Area				
	3,835		76.26%	Impervious	Area		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.0					Direct Entry,		

Subcatchment RPD2: R.O.W. Porous Driveway 2

Summary for Subcatchment S: Ex. South Basin

Runoff = 3.60 cfs @ 12.28 hrs, Volume= Routed to Link E-LIS : Ex. Long Island Sound

16,560 cf, Depth> 3.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

	Area (sf)	CN	Description					
*	2,521	98.00	Lot 1 Impervious					
*	5,741	61.00	Lot 1 >75% Grass cover, Good, HSG B					
*	7,953	68.00	Lot 1 Beach					
*	3,828	98.00	Lot 2 Impervious					
*	5,511	61.00	Lot 2 >75% Grass cover, Good, HSG B					
*	7,149	68.00	Lot 2 Beach					
*	304	98.00	Lot 3 Impervious					
*	8,029	61.00	Lot 3 >75% Grass cover, Good, HSG B					
*	6,681	68.00	Lot 3 Beach					
*	330	98.00	Lot 4 Impervious					
*	15,738	61.00	Lot 4 >75% Grass cover, Good, HSG B					
*	2,458	68.00	Lot 4 Beach					
*	6	61.00	R.O.W. >75% Grass cover, Good, HSG B					
	66,249	67.46	Weighte	d Average				
	59,266 89.46% Pervious Area			Pervious A	rea			
	6,983		10.54%	10.54% Impervious Area				
Т	c Length	Slope	Velocity	Capacity	Description			
(mii	n) (feet)	(ft/ft)	(ft/sec)	(cfs)				
19.	8 100	0.0080	0.08		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 3.45"			

2008 HydroCAD (2023-01-27)

Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Subcatchment S: Ex. South Basin

Summary for Subcatchment SB: South Bypass

Runoff = 4.63 cfs @ 12.13 hrs, Volume= Routed to Link P-LIS : Pr. Long Island Sound 16,089 cf, Depth> 2.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs Type III 24-hr 25-Year Rainfall=6.57"

_	A	rea (sf)	CN	Descript	ion				
*		890	98.00	Lot 1 Impervious					
*		6,949	61.00	Lot 1 >75% Grass cover, Good, HSG B					
*		7,953	68.00	Lot 1 Beach					
*		1,252	98.00	Lot 2 Impervious					
*		6,579	61.00	Lot 2 >75% Grass cover, Good, HSG B					
*		7,149	68.00	Lot 2 Beach					
*		818	98.00	Lot 3 Impervious					
*		7,566	61.00	Lot 3 >75% Grass cover, Good, HSG B					
*		6,681	68.00	Lot 3 Beach					
*		1,190	98.00	Lot 4 Impervious					
*		12,059	61.00	Lot 4 >75% Grass cover, Good, HSG B					
*		2,458	68.00	Lot 4 Beach					
*		1,060	98.00	R.O.W. Impervious					
*		3,750	61.00	R.O.W. >75% Grass cover, Good, HSG B					
	66,354 66.46		Weighted Average						
		61,144		92.15%	Pervious A	rea			
5,210		7.85% Impervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.4	72	0.0350	0.14		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.45"			
	0.6	68	0.0120	1.76		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	9.0	140	Total						
2008 HydroCAD (2023-01-27)

Flow (cfs)

1

0-

Ó

1 2

3 4 5 6 7 8 9 10

24

Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Time (hours)

11 12 13 14 15 16 17 18 19 20 21 22 23

Subcatchment SB: South Bypass

Summary for Pond 1D: Lot 1 Porous Driveway

Inflow Are	a =	2,664 sf	, 85.62% Impervious,	Inflow Depth > 5.	91" for 25-Year event
Inflow	=	0.39 cfs @	12.07 hrs, Volume=	1,313 cf	
Outflow	=	0.38 cfs @	12.08 hrs, Volume=	1,145 cf, /	Atten= 2%, Lag= 0.8 min
Primary	=	0.38 cfs @	12.08 hrs, Volume=	1,145 cf	-
Routed	to Link	P-LIS : Pr. Lo	ng Island Sound		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 9.92' @ 12.08 hrs Surf.Area= 300 sf Storage= 191 cf

Plug-Flow detention time= 103.5 min calculated for 1,145 cf (87% of inflow) Center-of-Mass det. time= 42.1 min (826.6 - 784.6)

Volume	Inv	ert Avail.S	torage	Storage	Description	
#1	8.	30'	140 cf	Stone S 351 cf C	storage* (Exclue overall x 40.0%	des stone within 1' of restrictive soil) (Prismatic))
#2	9.4	47'	30 cf	Paver S 99 cf Ov	o <mark>torage (Prisma</mark> verall x 30.0% V	tic) Listed below (Recalc) oids
#3	9.	80'	45 cf	Open A	ir Storage Abov	ve Pavers (Prismatic)Listed below (Recalc)
			215 cf	Total Av	ailable Storage	
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc (cubi	c.Store c-feet)	Cum.Store (cubic-feet)	
8.3	30	0		0	0	
8.4	40	300		15	15	
9.4	47	300		321	336	
9.8	57	0		15	351	
Elevatio	on	Surf.Area	Inc	Store.	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
9.4	47	0		0	0	
9.9	57	300		15	15	
9.8	80	300		69	84	
9.9	90	0		15	99	
Elevatio	on	Surf.Area	Inc	Store.	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
9.8	80	0		0	0	
9.9	90	300		15	15	
10.0	00	300		30	45	
Device	Routing	Inve	rt Outl	et Device	s	
#1	Primary	9.80)' Asy	mmetrica	al Weir, C= 3.27	
			Offs	et (feet)	0.00 5.00 9.99	10.00
			Heio	ght (feet)	0.50 0.00 0.10	0.50

Primary OutFlow Max=0.38 cfs @ 12.08 hrs HW=9.92' (Free Discharge)

1 ż ż

Ó

Ż 8 ģ 10

4 5 6 23

24

Hydrograph Inflow 0.39 cfs Primary 0.42 Inflow Area=2,66 0.38 cfs 0.4 0.38 Peak Elev=9.92' 0.36 0.34 0.32 Storage=191 cf 0.3 0.28 0.26 Flow (cfs) 0.24 0.22 0.2 0.18 0.16-0.14 0.12-0.1 0.08 0.06 0.04 0.02 0-14 15 16 17 18 19 20 21 22

11 12 13

Time (hours)

Pond 1D: Lot 1 Porous Driveway

Stage-Area-Storage for Pond 1D: Lot 1 Porous Driveway

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
8.30	0	9.36	121
8.32	0	9.38	124
8.34	1	9.40	126
8.36	2	9.42	128
8.38	4	9.44	131
8.40	0	9.40	133
0.4Z 8.44	0 11	9.40	130
8 46	13	9.50	130
8.48	16	9.54	142
8.50	18	9.56	144
8.52	20	9.58	146
8.54	23	9.60	148
8.56	25	9.62	149
8.58	28	9.64	151
8.60	30	9.66	153
8.62	32	9.68	155
8.64	35	9.70	157
8.66	37	9.72	158
8.68	40	9.74	160
0.70	42	9.70	102
8 74	44 47	9.70	166
8 76	49	9.80	168
8.78	52	9.84	171
8.80	54	9.86	175
8.82	56	9.88	180
8.84	59	9.90	185
8.86	61	9.92	191
8.88	64	9.94	197
8.90	66	9.96	203
8.92	68	9.98	209
8.94	71	10.00	215
0.90 8 08	75	10.02	210
9.00	70	10.04	215
9.02	80	10.08	215
9.04	83	10.10	215
9.06	85	10.12	215
9.08	88	10.14	215
9.10	90	10.16	215
9.12	92	10.18	215
9.14	95	10.20	215
9.16	97	10.22	215
9.18	100	10.24	215
9.20	102	10.20	215
9.22 0.24	104	10.20 10.30	∠10 015
9.24 0.26	107	10.50	210
9.20	112		
9.30	114		
9.32	116		
9.34	119		

Summary for Pond 1P: Lot 1 Permeable Patio

Inflow Are	ea =	2,956 sf	100.00% Impervious,	Inflow Depth >	6.38" fo	or 25-Year event
Inflow	=	0.45 cfs @	12.07 hrs, Volume=	1,572 cf		
Outflow	=	0.44 cfs @	12.08 hrs, Volume=	1,023 cf,	, Atten=	1%, Lag= 0.3 min
Primary	=	0.44 cfs @	12.08 hrs, Volume=	1,023 cf		•
Route	d to Li	nk P-LIS : Pr. Lo	ng Island Sound			

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 9.03' @ 12.08 hrs Surf.Area= 2,108 sf Storage= 558 cf

Plug-Flow detention time= 203.1 min calculated for 1,023 cf (65% of inflow) Center-of-Mass det. time= 99.0 min (838.0 - 739.1)

Volume	Inv	ert Ava	il.Storage	Storag	e Description	
#1	7.0	67'	502 cf	Stone 1,254	Storage (Prisma cf Overall x 40.0%	tic)Listed below (Recalc) 6 Voids
#2	8.0	67'	125 cf	Paver 418 cf	Storage (Prisma Overall x 30.0%	tic) Listed below (Recalc) Voids
#3	9.0	00'	1,108 cf	Open	Air Storage Over	Pavers (Prismatic)Listed below (Recalc)
			1,735 cf	Total /	Available Storage	
Elevatio	n	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
7.6	67	0		0	0	
7.9	91	390		47	47	
7.9)2	1,248		8	55	
8.6	67	1,248		936	991	
8.9	92	858		263	1,254	
Elevatio	n	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
8.6	67	0		0	0	
8.9)1	390		47	47	
8.9)2	1,248		8	55	
9.0	00	1,248		100	155	
9.2	25	858		263	418	
Elevatio	n	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
9.0	00	0		0	0	
9.2	24	390		47	47	
9.2	25	1,248		8	55	
10.2	25	858		1,053	1,108	
Device	Routing	In	vert Outl	et Devid	ces	
#1	Primary	9	.00' 34.0 Hea	' long d (feet)	x 0.5' breadth Bro 0.20 0.40 0.60	bad-Crested Rectangular Weir 0.80 1.00

Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=9.03' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.40 cfs @ 0.45 fps)

Pond 1P: Lot 1 Permeable Patio

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 1P: Lot 1 Permeable Patio

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
7.67	0	8.73	426	9.79	1.299
7.69	0 0	8.75	436	9.81	1.320
7.71	1	8.77	446	9.83	1.340
7.73	1	8.79	455	9.85	1,361
7.75	2	8.81	465	9.87	1,381
7.77	3	8.83	475	9.89	1,401
7.79	5	8.85	484	9.91	1,421
7.81	6	8.87	494	9.93	1,441
7.83	8	8.89	503	9.95	1,460
7.85	11	8.91	512	9.97	1,480
7.87	13	8.93	522	9.99	1,499
7.89	10	8.95	529	10.01	1,518
7.91	19	0.97	537	10.03	1,007
7.95	27	0.99	552	10.05	1,550
7.95	47	9.01	560	10.07	1,574
7 99	57	9.00	568	10.00	1,000
8.01	67	9.07	577	10.13	1.629
8.03	77	9.09	587	10.15	1,647
8.05	87	9.11	596	10.17	1,665
8.07	97	9.13	607	10.19	1,683
8.09	107	9.15	617	10.21	1,700
8.11	117	9.17	629	10.23	1,718
8.13	127	9.19	640	10.25	1,735
8.15	137	9.21	652		
8.17 9.10	147	9.23	000 682		
0.19 8.21	107	9.20	002 707		
8 23	107	9.27	732		
8 25	187	9.31	756		
8.27	197	9.33	781		
8.29	207	9.35	805		
8.31	217	9.37	829		
8.33	227	9.39	853		
8.35	237	9.41	877		
8.37	247	9.43	900		
8.39	257	9.45	924		
8.41	207	9.47	947		
0.43 8.45	211	9.49	970		
8 47	207	9.51	1 016		
8.49	307	9.55	1,039		
8.51	317	9.57	1.062		
8.53	327	9.59	1,084		
8.55	336	9.61	1,106		
8.57	346	9.63	1,128		
8.59	356	9.65	1,150		
8.61	366	9.67	1,172		
8.63	376	9.69	1,193		
8.65 9.67	380	9./1	1,215		
0.07 8 80	390 390	9.73	1,230 1 257		
8 71	400	9.75	1 278		
0.71	410	5.11	1,270		

Summary for Pond 2D: Lot 2 Porous Driveway

Inflow Are	a =	2,875 sf	, 82.09% Impervious,	Inflow Depth > 5	.90" for 25-Year event
Inflow	=	0.41 cfs @	12.07 hrs, Volume=	1,414 cf	
Outflow	=	0.41 cfs @	12.08 hrs, Volume=	1,087 cf,	Atten= 2%, Lag= 0.7 min
Primary	=	0.41 cfs @	12.08 hrs, Volume=	1,087 cf	-
Routed	l to Link	(P-LIS : Pr. Lo	ong Island Sound		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 9.92' @ 12.08 hrs Surf.Area= 584 sf Storage= 354 cf

Plug-Flow detention time= 157.0 min calculated for 1,087 cf (77% of inflow) Center-of-Mass det. time= 62.6 min (861.5 - 798.8)

Volume	Invert	Avail.St	orage	Stora	age Description
#1	8.30'	3	304 cf	Stone	e Storage (Prismatic)Listed below (Recalc)
#2	9 47'		61 cf	761 C	ct Overall X 40.0% Volds er Storage (Prismatic) isted below (Recalc)
	0.11		0101	203 c	of Overall x 30.0% Voids
#3	9.80'		163 cf	Open	n Air Storage Above Pavers (Prismatic)_isted below (Recalc)
		Ę	528 cf	Total	Available Storage
Elevation	S	urf.Area	Inc	.Store	Cum.Store
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)
8.30		0		0	0
8.80		650		163	163
9.47		650		435	598
9.97		0		163	761
Elevation	S	urf.Area	Inc	Store	Cum.Store
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)
9.47		0		0	0
9.80		502		83	83
9.97		309		69	152
10.30		0		51	203
Elevation	S	urf.Area	Inc	Store	Cum.Store
(feet)		(sq-ft)	(cubio	c-feet)	(cubic-feet)
9.80		0		0	0
10.30		650		163	163
Device Ro	uting	Invert	Outle	et Devi	rices
#1 Prii	mary	9.80'	Asyr Offse Heig	nmetr et (feet ht (fee	rical Weir, C= 3.27 t) 0.00 5.00 9.99 10.00 et) 0.50 0.00 0.10 0.50

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=9.92' (Free Discharge) 1=Asymmetrical Weir (Weir Controls 0.40 cfs @ 0.53 fps)

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc.

Hydrograph Inflow 0.41 cfs 0.46 Primary 0.44 Inflow Area=2,87 0.41 cfs 0.42-0.4 Peak Elev=9.92' 0.38 0.36 Storage=354 cf 0.34 0.32 0.3 0.28 (f) 0.26-0.24-Flow 0.22 0.2 0.18 0.16-0.14 0.12-0.1 0.08 0.06 0.04 0.02 0-11 12 13 14 15 16 17 18 19 20 21 22 1 ż ż 8 ģ 10 23 Ó 4 5 6 7 24

Time (hours)

Pond 2D: Lot 2 Porous Driveway

HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 2D: Lot 2 Porous Driveway

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
8.30	0	9.36	211
8.3Z	0	9.38	210
0.34	0	9.40	221
8.30	1	9.42	220
8.40	∠ 3	9.44	231
8 42	4	9.48	242
8.44	5	9.50	247
8.46	7	9.52	252
8.48	8	9.54	257
8.50	10	9.56	262
8.52	13	9.58	267
8.54	15	9.60	272
8.56	18	9.62	277
8.58	20	9.64	282
8.60	23	9.66	287
8.62	27	9.68	292
8.64	30	9.70	297
0.00	34 29	9.72	30Z 207
8 70	30 42	9.74	312
8 72	42	9.70	312
8 74	50	9.80	322
8.76	55	9.82	326
8.78	60	9.84	331
8.80	65	9.86	337
8.82	70	9.88	342
8.84	75	9.90	348
8.86	81	9.92	353
8.88	86	9.94	359
8.90	91	9.96	365
8.92	96	9.98	372
8.94	101	10.00	3/8
8.90	107	10.02	303
9.00	112	10.04	401
9.02	122	10.00	409
9.04	127	10.10	418
9.06	133	10.12	427
9.08	138	10.14	437
9.10	143	10.16	447
9.12	148	10.18	457
9.14	153	10.20	468
9.16	159	10.22	479
9.18	164	10.24	490
9.20	169	10.26	502
9.22	1/4	10.28	015 E 20
9.24 0.26	1/9	10.30	520
9.20	100		
9.20	195		
9.32	200		
9.34	205		

Summary for Pond 2P: Lot 2 Permeable Patio

Inflow Ar	ea =	2,956 sf	,100.00% Impervious,	Inflow Depth > 6	.38" for 25-Year event
Inflow	=	0.45 cfs @	12.07 hrs, Volume=	1,572 cf	
Outflow	=	0.44 cfs @	12.08 hrs, Volume=	1,017 cf,	Atten= 1%, Lag= 0.3 min
Primary	=	0.44 cfs @	12.08 hrs, Volume=	1,017 cf	-
Route	ed to Lin	k P-LIS : Pr. Lo	ong Island Sound		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 8.78' @ 12.08 hrs Surf.Area= 2,107 sf Storage= 567 cf

Plug-Flow detention time= 204.6 min calculated for 1,017 cf (65% of inflow) Center-of-Mass det. time= 99.8 min (838.8 - 739.1)

Volume	Invert	Avail.Storage	Storage Description
#1	7.42'	509 cf	Stone Storage (Prismatic)Listed below (Recalc)
#2	8.42'	127 cf	Paver Storage (Prismatic)Listed below (Recalc)
#3	8.75'	1,112 cf	424 cf Overall x 30.0% Voids Open Air Storage Over Pavers (Prismatic)Listed below (Recalc)
		1,748 cf	Total Available Storage
Elevation	Surf.Ar	rea Inc	c.Store Cum.Store

	Sun Area	110.000	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
7.42	0	0	0
7.66	425	51	51
7.67	1,265	8	59
8.42	1,265	949	1,008
8.67	840	263	1,271
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
8.42	0	0	0
8.66	425	51	51
8.67	1,265	8	59
8.75	1,265	101	161
9.00	840	263	424
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
8.75	0	0	0
8.99	425	51	51
9.00	1,265	8	59
10.00	840	1,053	1,112

Device	Routing	Invert	Outlet Devices
#1	Primary	8.75'	34.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=8.78' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.40 cfs @ 0.45 fps)

Pond 2P: Lot 2 Permeable Patio

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 2P: Lot 2 Permeable Patio

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
7.42	0	8.48	433	9.54	1.316
7.44	Ő	8.50	443	9.56	1,337
7.46	1	8.52	453	9.58	1.357
7.48	1	8.54	463	9.60	1,378
7.50	2	8.56	473	9.62	1,398
7.52	4	8.58	482	9.64	1,418
7.54	5	8.60	492	9.66	1,437
7.56	7	8.62	502	9.68	1,457
7.58	9	8.64	511	9.70	1,476
7.60	11	8.66	520	9.72	1,496
7.62	14	8.68	530	9.74	1,515
7.64	17	8.70	538	9.76	1,534
7.66	20	8.72	545	9.78	1,553
7.68	29	8.74	553	9.80	1,571
7.70	39	8.76	561	9.82	1,590
7.72	49	8.78	569	9.84	1,608
7.74	59	8.80	5//	9.86	1,626
7.76	69	8.82	586	9.88	1,644
7.78	79	8.84	596	9.90	1,661
7.80	90	0.80 0.00	600 617	9.92	1,079
7.02	100	0.00	629	9.94	1,090
7.04	110	8.90	630	9.90	1,714
7.88	120	8 94	652	10 00	1,731
7.00	140	8.96	664	10.00	1,740
7.92	150	8.98	677		
7.94	160	9.00	695		
7.96	171	9.02	720		
7.98	181	9.04	745		
8.00	191	9.06	770		
8.02	201	9.08	795		
8.04	211	9.10	819		
8.06	221	9.12	844		
8.08	231	9.14	868		
8.10	241	9.16	892		
8.12	251	9.18	916		
8.14	262	9.20	940		
8.16	272	9.22	963		
8.18	282	9.24	980		
0.20	292	9.20	1,010		
8.24	312	9.20	1,035		
8 26	322	9.32	1,000		
8 28	332	9.34	1,070		
8.30	343	9.36	1,123		
8.32	353	9.38	1,145		
8.34	363	9.40	1,167		
8.36	373	9.42	1,189		
8.38	383	9.44	1,211		
8.40	393	9.46	1,232		
8.42	403	9.48	1,253		
8.44	413	9.50	1,274		
8.46	423	9.52	1,295		
		•		•	

Summary for Pond 3D: Lot 3 Porous Driveway

Inflow Are	a =	3,030 sf	, 81.09% Impervious,	Inflow Depth > 5	.51" for 25-Year event
Inflow	=	0.44 cfs @	12.07 hrs, Volume=	1,392 cf	
Outflow	=	0.43 cfs @	12.08 hrs, Volume=	1,066 cf,	Atten= 2%, Lag= 0.7 min
Primary	=	0.43 cfs @	12.08 hrs, Volume=	1,066 cf	-
Routed	to Link	P-LIS : Pr. Lo	ng Island Sound		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 9.92' @ 12.08 hrs Surf.Area= 581 sf Storage= 355 cf

Plug-Flow detention time= 138.5 min calculated for 1,065 cf (76% of inflow) Center-of-Mass det. time= 57.8 min (834.8 - 776.9)

Volume	Inv	ert Avail.S	torage	Storag	ge Description	
#1	8.	30'	304 cf	Stone	Storage (Prisma	tic)Listed below (Recalc)
				761 cl	Overall x 40.0%	Voids
#2	9.4	47'	61 cf	Paver	Storage (Prisma	tic)Listed below (Recalc)
#2	0.1	201	162 of	203 Cl	Overall x 30.0%	Volds / Revers (Priemetic) isted below (Recele)
<u>#3</u>	9.0	50	103 01	Open	All Storage Abov	
			528 cf	lotal	Available Storage	
Elevatio	on	Surf.Area	Inc	Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
8.3	30	0		0	0	
8.8	80	650		163	163	
9.4	47	650		435	598	
9.9	97	0		163	761	
Flave ti		Overf Anna a		Ct = m	Ourse Otema	
Elevatio	on • •	Surf.Area	INC (h	Store	Cum.Store	
(100	et)	<u>(sq-π)</u>	(Cubi	c-reet)	(cubic-teet)	
9.4	47	0		0	0	
9.8	80	502		83	83	
9.9	97	309		69	152	
10.3	30	0		51	203	
Elevatio	on	Surf.Area	Inc	Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
9.8	80	0	•	0	0	
10.3	30	650		163	163	
Device	Routing	Inve	rt Outl	et Devi	ces	
<u>= =</u> #1	Primary	<u>م باران</u> م م ر)' <u>Aev</u>	mmotri	cal Weir C- 3 27	
πı	i innai y	9.00	, A3y Offe	et (feet)		10.00
			Heio	iht (feet	(0.000, 0000, 0000, 0	0.50
			i leig	וובכו	, 0.00 0.00 0.10	0.00

Primary OutFlow Max=0.42 cfs @ 12.08 hrs HW=9.92' (Free Discharge) 1=Asymmetrical Weir (Weir Controls 0.42 cfs @ 0.54 fps)

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc.

HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC
Pond 3D: Lot 3 Porous Driveway
Hydrograph

HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3D: Lot 3 Porous Driveway

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
8.30	0	9.36	211
8.32	0	9.38	216
8.34	0	9.40	221
0.30	ן ר	9.42	220
0.30	2	9.44	231
8.40	5 4	9.40	237
8 44	5	9.50	242
8.46	7	9.52	252
8.48	8	9.54	257
8.50	10	9.56	262
8.52	13	9.58	267
8.54	15	9.60	272
8.56	18	9.62	277
8.58	20	9.64	282
8.60	23	9.66	287
8.62	27	9.68	292
8.64	30	9.70	297
8.00	34	9.72	302
0.00 8.70	30	9.74	307
8.70	42	9.70	312
8 74	50	9.80	322
8.76	55	9.82	326
8.78	60	9.84	331
8.80	65	9.86	337
8.82	70	9.88	342
8.84	75	9.90	348
8.86	81	9.92	353
8.88	86	9.94	359
8.90	91	9.96	365
8.92	96	9.98	372
8.94	101	10.00	3/8
0.90 8.08	107	10.02	303
9.00	112	10.04	401
9.02	122	10.00	409
9.04	127	10.10	418
9.06	133	10.12	427
9.08	138	10.14	437
9.10	143	10.16	447
9.12	148	10.18	457
9.14	153	10.20	468
9.16	159	10.22	479
9.18	164	10.24	490
9.20	169	10.26	502
9.22	1/4	10.28	010 E 20
9.24 9.26	1/9	10.30	J20
9.20	190		
9.30	195		
9.32	200		
9.34	205		

Summary for Pond 3P: Lot 3 Permeable Patio

Inflow Ar	rea =	2,956 sf	,100.00% Impervious,	Inflow Depth > 6	6.38" for 25	5-Year event
Inflow	=	0.45 cfs @	12.07 hrs, Volume=	1,572 cf		
Outflow	=	0.44 cfs @	12.08 hrs, Volume=	1,017 cf,	, Atten= 1%,	Lag= 0.3 min
Primary	=	0.44 cfs @	12.08 hrs, Volume=	1,017 cf		•
Route	ed to Link	P-LIS : Pr. Lo	ong Island Sound			

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 8.78' @ 12.08 hrs Surf.Area= 2,107 sf Storage= 567 cf

Plug-Flow detention time= 204.6 min calculated for 1,017 cf (65% of inflow) Center-of-Mass det. time= 99.8 min (838.8 - 739.1)

Volume	Invert	Avail.Storage	Storage Description
#1	7.42'	509 cf	Stone Storage (Prismatic)Listed below (Recalc)
#2	8.42'	127 cf	Paver Storage (Prismatic)Listed below (Recalc)
#3	8.75'	1,112 cf	424 cf Overall x 30.0% Voids Open Air Storage Over Pavers (Prismatic)Listed below (Recalc)
		1,748 cf	Total Available Storage
Elevation	Surf.A	rea Inc	Store Cum.Store

Licvation	Ourr./ lica	110.01010	Ourn.Otore
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
7.42	0	0	0
7.66	425	51	51
7.67	1,265	8	59
8.42	1,265	949	1,008
8.67	840	263	1,271
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
8.42	0	0	0
8.66	425	51	51
8.67	1,265	8	59
8.75	1,265	101	161
9.00	840	263	424
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
8.75	0	0	0
8.99	425	51	51
9.00	1,265	8	59
10.00	840	1,053	1,112

Device	Routing	Invert	Outlet Devices
#1	Primary	8.75'	34.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=0.40 cfs @ 12.08 hrs HW=8.78' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.40 cfs @ 0.45 fps)

Pond 3P: Lot 3 Permeable Patio

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3P: Lot 3 Permeable Patio

Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)	Elevation (feet)	Storage (cubic-feet)
7.42	0	8.48	433	9.54	1.316
7.44	Ő	8.50	443	9.56	1,337
7.46	1	8.52	453	9.58	1.357
7.48	1	8.54	463	9.60	1,378
7.50	2	8.56	473	9.62	1,398
7.52	4	8.58	482	9.64	1,418
7.54	5	8.60	492	9.66	1,437
7.56	7	8.62	502	9.68	1,457
7.58	9	8.64	511	9.70	1,476
7.60	11	8.66	520	9.72	1,496
7.62	14	8.68	530	9.74	1,515
7.64	17	8.70	538	9.76	1,534
7.66	20	8.72	545	9.78	1,553
7.68	29	8.74	553	9.80	1,571
7.70	39	8.76	561	9.82	1,590
7.72	49	8.78	569	9.84	1,608
7.74	59	8.80	5//	9.86	1,626
7.76	69	8.82	586	9.88	1,644
7.78	79	8.84	596	9.90	1,661
7.80	90	0.80 0.00	600 617	9.92	1,079
7.02	100	0.00	629	9.94	1,090
7.04	110	8.90	630	9.90	1,714
7.88	120	8 94	652	10 00	1,731
7.00	140	8.96	664	10.00	1,740
7.92	150	8.98	677		
7.94	160	9.00	695		
7.96	171	9.02	720		
7.98	181	9.04	745		
8.00	191	9.06	770		
8.02	201	9.08	795		
8.04	211	9.10	819		
8.06	221	9.12	844		
8.08	231	9.14	868		
8.10	241	9.16	892		
8.12	251	9.18	916		
8.14	262	9.20	940		
8.16	272	9.22	963		
8.18	282	9.24	980		
0.20	292	9.20	1,010		
8.24	312	9.20	1,035		
8 26	322	9.32	1,000		
8 28	332	9.34	1,070		
8.30	343	9.36	1,123		
8.32	353	9.38	1,145		
8.34	363	9.40	1,167		
8.36	373	9.42	1,189		
8.38	383	9.44	1,211		
8.40	393	9.46	1,232		
8.42	403	9.48	1,253		
8.44	413	9.50	1,274		
8.46	423	9.52	1,295		
		•		•	

Summary for Pond 4D: Lot 4 Porous Driveway

Inflow Are	ea =	2,985 sf,	, 89.82% Impervious,	Inflow Depth > 5.8	8" for 25-Year event
Inflow	=	0.44 cfs @	12.07 hrs, Volume=	1,464 cf	
Outflow	=	0.44 cfs @	12.08 hrs, Volume=	931 cf, A	tten= 2%, Lag= 0.4 min
Primary	=	0.44 cfs @	12.08 hrs, Volume=	931 cf	-
Route	d to Lin	k P-LIS : Pr. Lo	ng Island Sound		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 9.04' @ 12.08 hrs Surf.Area= 1,044 sf Storage= 549 cf

Plug-Flow detention time= 187.1 min calculated for 931 cf (64% of inflow) Center-of-Mass det. time= 86.6 min (850.4 - 763.8)

Volume	Inv	ert Avail.S	torage	Storag	age Description
#1	7.	50'	501 cf	Stone	e Storage (Prismatic)Listed below (Recalc)
#2	0	87'	102 of	1,252 Boyor	2 cf Overall x 40.0% Voids
#2	0.0	07		342 cf	of Overall x 30.0% Voids
#3	9.	00'	214 cf	Open	h Air Storage Above Pavers (Prismatic)Listed below (Recald
			817 cf	Total /	Available Storage
Elovatio	nn.	Surf Aroa	Inc	Store	Cum Storo
	الر t)	Sull.Alea	(cubic	.Store	(cubic-feet)
7 4	50	0		0	
7.9	90	1 070		214	214
8.6	57 57	1.070		824	1.038
9.0)7	0		214	1,252
Elevatio	n	Surf Area	Inc	Store	Cum Store
(fee	et)	(sq-ft)	(cubio	c-feet)	(cubic-feet)
8.6	57	0	•	0	0
9.0	00	768		127	127
9.0)7	940		60	187
9.4	40	0		155	342
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store
(fee	et)	(sq-ft)	(cubio	c-feet)	(cubic-feet)
9.0	00	0		0	0
9.4	40	1,070		214	214
Device	Routing	Inve	rt Outle	et Devid	ices
#1	Primary	9.00)' Asyı	nmetri	rical Weir, C= 3.27
	,		Offse	et (feet)	t) 0.00 0.01 18.99 19.00
			Heig	ht (feet	et) 0.50 0.00 0.00 0.50

Primary OutFlow Max=0.42 cfs @ 12.08 hrs HW=9.04' (Free Discharge) 1=Asymmetrical Weir (Weir Controls 0.42 cfs @ 0.62 fps)

2008 HydroCAD (2023-01-27)

Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 4D: Lot 4 Porous Driveway

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
7.50	0	8.56	368
7.52	0	8.58	3//
7.04	1	0.00	300
7.50	2	8.02	394 402
7.50	5	8.66	402
7.60	8	8.68	419
7.64	10	8.70	428
7.66	14	8.72	436
7.68	17	8.74	444
7.70	21	8.76	452
7.72	26	8.78	460
7.74	31	8.80	468
7.76	36	8.82	475
7.78	42	8.84	483
7.80	48	8.86	490
7.82	55	8.88	497
7.84	62 60	8.90	504 511
7.00	09 77	0.92 8.04	517
7.00	86	8.94	524
7.92	94	8.98	530
7.94	103	9.00	536
7.96	111	9.02	543
7.98	120	9.04	550
8.00	128	9.06	559
8.02	137	9.08	568
8.04	146	9.10	578
8.06	154	9.12	589
8.08	163	9.14	601
8.10	1/1	9.16	613
8.12	180	9.18	626
0.14	100	9.20	640 654
8 18	205	9.22	669
8 20	200	9.24	685
8.22	223	9.28	702
8.24	231	9.30	719
8.26	240	9.32	737
8.28	248	9.34	756
8.30	257	9.36	776
8.32	265	9.38	796
8.34	274	9.40	817
8.36	282	9.42	81/
8.38	291	9.44	817
0.4U 0.40	300	9.40	017
0.4Z 8 //	3U0 217	9.40 0.50	01/ Q17
8 46	325	9.50	017
8.48	334		
8.50	342		
8.52	351		
8.54	360		

Summary for Pond 4P: Lot 4 Permeable Patio

Inflow Are	ea =	3,073 sf,	,100.00% Impervious,	Inflow Depth > 6.	38" for 25-Year event
Inflow	=	0.47 cfs @	12.07 hrs, Volume=	1,634 cf	
Outflow	=	0.46 cfs @	12.08 hrs, Volume=	1,175 cf,	Atten= 1%, Lag= 0.3 min
Primary	=	0.46 cfs @	12.08 hrs, Volume=	1,175 cf	-
Routed	d to Lii	nk P-LIS : Pr. Lo	ng Island Sound		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 8.78' @ 12.08 hrs Surf.Area= 1,661 sf Storage= 469 cf

Plug-Flow detention time= 179.2 min calculated for 1,175 cf (72% of inflow) Center-of-Mass det. time= 86.3 min (825.5 - 739.2)

Volume	Invert	Avail.Storage	Stora	ge Description	
#1	7.42'	412 cf	Stone 1,029	e Storage (Prisma cf Overall x 40.09	tic) Listed below (Recalc) % Voids
#2	8.42'	109 cf	Pave 364 c	r Storage (Prisma f Overall x 30.0%	tic) Listed below (Recalc) Voids
#3	8.75'	1,156 cf	Open	Air Storage Over	Pavers (Prismatic)Listed below (Recalc)
		1,677 cf	Total	Available Storage	
Elevation (feet)	Surf.Aı (sq	rea In -ft) (cub	c.Store ic-feet)	Cum.Store (cubic-feet)	
7.42		0	0	0	
7.66	5	514	62	62	
7.67	1,C	86	8	70	
7.92	1,C	86	272	341	
8.75	5	572	688	1,029	
Elevation (feet)	Surf.Aı (sq	rea In -ft) (cub	c.Store ic-feet)	Cum.Store (cubic-feet)	
8.42		0	0	0	

62

70

157

364

0

62

70

1,156

Cum.Store

(cubic-feet)

Device	Routing	Invert	Outlet Devices
#1	Primary	8.75'	29.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

62

8

0

8

62

1,086

87 207

Inc.Store

(cubic-feet)

8.66

8.67

8.75

9.00

(feet)

8.75

8.99

9.00

10.00

Elevation

514 1,086

1,086

Surf.Area

(sq-ft)

0

514

1,086

1,086

572

Primary OutFlow Max=0.43 cfs @ 12.08 hrs HW=8.78' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.43 cfs @ 0.49 fps)

Pond 4P: Lot 4 Permeable Patio

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 4P: Lot 4 Permeable Patio

Elevation	Storage	Elevation	Storage	Elevation	Storage
7.42			(CUDIC-IEEL) 242		
7.42	0	8 50	342	9.54	1,177
7.44	1	8 52	356	9.50	1 220
7 48	2	8.54	363	9.60	1 242
7.10	3	8.56	370	9.62	1 264
7.52	4	8.58	377	9.64	1,286
7.54	6	8.60	385	9.66	1.307
7.56	8	8.62	393	9.68	1,329
7.58	11	8.64	401	9.70	1,351
7.60	14	8.66	409	9.72	1,372
7.62	17	8.68	419	9.74	1,394
7.64	21	8.70	431	9.76	1,416
7.66	25	8.72	442	9.78	1,438
7.68	32	8.74	453	9.80	1,459
7.70	41	8.70	462	9.82	1,481
1.1Z 7.7A	50 58	0.70	409 477	9.04	1,503
7.74	67	8.82	477	9.00	1,524
7 78	76	8 84	400	9.00	1,540
7.80	84	8 86	504	9.92	1,590
7.82	93	8.88	514	9.94	1.611
7.84	102	8.90	525	9.96	1,633
7.86	110	8.92	536	9.98	1,655
7.88	119	8.94	548	10.00	1,677
7.90	128	8.96	561		
7.92	136	8.98	574		
7.94	145	9.00	591		
7.96	154	9.02	612		
7.98	162	9.04	634		
8.00	170	9.00	000 677		
0.02 8.04	179	9.00	600		
8.06	195	9.10	721		
8.08	203	9.14	743		
8.10	211	9.16	764		
8.12	218	9.18	786		
8.14	226	9.20	808		
8.16	234	9.22	829		
8.18	241	9.24	851		
8.20	248	9.26	873		
8.22	256	9.28	895		
8.24	203	9.30	910		
8.20	270	9.32	930		
8.30	284	9.34	900		
8.32	290	9.38	1 003		
8.34	297	9.40	1.025		
8.36	304	9.42	1,047		
8.38	310	9.44	1,068		
8.40	316	9.46	1,090		
8.42	323	9.48	1,112		
8.44	329	9.50	1,134		
8.46	335	9.52	1,155		
		•		•	

Summary for Pond RD1: R.O.W. Porous Driveway 1

Inflow Area	=	3,5	17 sf,	77.77% In	npervious,	Inflow Depth >	5.37"	for 2	5-Year e	event
Inflow	=	0.50 cfs	s @	12.07 hrs,	Volume=	1,575 c	f			
Outflow	=	0.01 cfs	s @	16.39 hrs,	Volume=	204 c	f, Atten	= 97%	5, Lag=	259.1 min
Primary	=	0.00 cfs	s @	16.39 hrs,	Volume=	74 c	f			
Routed	to Pond	RD2 : F	R.O.W	. Porous D	riveway 2					
Secondary	=	0.00 cfs	s @	16.39 hrs,	Volume=	46 c	f			
Routed	to Pond	1D : Lo	t 1 Po	rous Drive	way					
Tertiary	=	0.01 cfs	s @	16.39 hrs,	Volume=	83 c	f			
Routed t	to Pond	2D : Lo	t 2 Po	rous Drive	way					

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 12.00' @ 16.39 hrs Surf.Area= 7,178 sf Storage= 1,372 cf

Plug-Flow detention time= 628.8 min calculated for 203 cf (13% of inflow) Center-of-Mass det. time= 389.7 min (1,170.9 - 781.3)

Volume	Inve	ert Ava	il.Stora	ge Stora	ge Description	
#1	10.5	0'	1,131	cf Ston	e Storage (Prisma	atic)Listed below (Recalc)
#0	11 6	7'	220	2,828	s cf Overall x 40.0	% Voids
#2	11.0	1	239	708 c	f Overall x 30.0%	Voids
#3	12.0	0'	2.344	cf Oper	Air Storage Abo	ve Pavers (Prismatic)Listed below (Recalc)
		-	3,714	cf Total	Available Storage	
					Ũ	
Elevatio	on	Surf.Area		Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(0	cubic-feet)	(cubic-feet)	
10.5	50	2,417		0	0	
11.6	67	2,417		2,828	2,828	
Elevatio	on	Surf.Area		Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(0	cubic-feet)	(cubic-feet)	
11.6	57	2,417		0	0	
12.0	00	2,417		798	798	
Elevatio	on	Surf.Area		Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(0	cubic-feet)	(cubic-feet)	
12.0)0	2,344	•	0	0	
13.0	00	2,344		2,344	2,344	
Device	Routina	In	vert (Outlet Dev	ices	
#1	Primarv	12	2.00'	20.5' lona	+ 100.0 '/' SideZ	x 0.5' breadth Common Driveway
	5		ł	Head (feet) 0.20 0.40 0.60	0.80 1.00
			(Coef. (Eng	, lish) 2.80 2.92 3.	.08 3.30 3.32
#2	Seconda	ry 12	2.00' '	12.0' long	+ 100.0 '/' SideZ	x 0.5' breadth Lot 2 Driveway
			ŀ	Head (feet) 0.20 0.40 0.60	0.80 1.00
			(Coef. (Eng	lish) 2.80 2.92 3.	.08 3.30 3.32
#3	Tertiary	12	2.00'	23.2' long	+ 100.0 '/' SideZ	x 0.5' breadth Lot 1 Driveway
			ł	Head (feet) 0.20 0.40 0.60	0.80 1.00
			(Coet. (Eng	lish) 2.80 2.92 3.	.08 3.30 3.32

Primary OutFlow Max=0.00 cfs @ 16.39 hrs HW=12.00' (Free Discharge) **1=Common Driveway** (Weir Controls 0.00 cfs @ 0.06 fps)

Secondary OutFlow Max=0.00 cfs @ 16.39 hrs HW=12.00' (Free Discharge) —2=Lot 2 Driveway (Weir Controls 0.00 cfs @ 0.06 fps)

Tertiary OutFlow Max=0.00 cfs @ 16.39 hrs HW=12.00' (Free Discharge) **-3=Lot 1 Driveway** (Weir Controls 0.00 cfs @ 0.06 fps)

Pond RD1: R.O.W. Porous Driveway 1

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond RD1: R.O.W. Porous Driveway 1

Elevation	Storage	Elevation	Storage	Elevation	Storage
10.50		<u> </u>	(cubic-ieet) 1 025	12 62	2 824
10.52	19	11.58	1,023	12.64	2,024
10.54	39	11.60	1,063	12.66	2,917
10.56	58	11.62	1,083	12.68	2,964
10.58	77	11.64	1,102	12.70	3,011
10.60	97	11.66	1,121	12.72	3,058
10.62	116	11.68	1,138	12.74	3,105
10.64	130	11.70	1,100	12.70	3,15Z 3,100
10.68	174	11.74	1,182	12.80	3,246
10.70	193	11.76	1,196	12.82	3,293
10.72	213	11.78	1,211	12.84	3,339
10.74	232	11.80	1,225	12.86	3,386
10.76	251	11.82	1,240	12.88	3,433
10.78	271	11.84	1,254	12.90	3,480
10.80	290	11.00	1,209	12.92	3,527
10.84	329	11.90	1,200	12.96	3.621
10.86	348	11.92	1,312	12.98	3,668
10.88	367	11.94	1,327	13.00	3,714
10.90	387	11.96	1,341		
10.92	406	11.98	1,356		
10.94	425	12.00	1,370		
10.90	464	12.02	1 464		
11.00	483	12.06	1,511		
11.02	503	12.08	1,558		
11.04	522	12.10	1,605		
11.06	541	12.12	1,652		
11.08	501	12.14	1,699		
11.10	599	12.10	1,743		
11.14	619	12.20	1,839		
11.16	638	12.22	1,886		
11.18	657	12.24	1,933		
11.20	677	12.26	1,980		
11.22	696 715	12.28	2,027		
11.24	715	12.30	2,074		
11.28	754	12.34	2,121		
11.30	773	12.36	2,214		
11.32	793	12.38	2,261		
11.34	812	12.40	2,308		
11.36	831	12.42	2,355		
11.38	851	12.44	2,402		
11.40	889	12.40	2,449 2 496		
11.44	909	12.10	2,542		
11.46	928	12.52	2,589		
11.48	947	12.54	2,636		
11.50	967	12.56	2,683		
11.5Z 11.57	980 1 005	12.58	2,130 2777		
11.54	1,005	12.00	2,111		

Summary for Pond RD2: R.O.W. Porous Driveway 2

Inflow Area	a =	8,546 sf,	76.88% lm	pervious,	Inflow Depth >	3.23"	for 25-Year event
Inflow	=	0.71 cfs @	12.07 hrs, \	Volume=	2,300 0	of	
Outflow	=	0.68 cfs @	12.09 hrs, \	Volume=	1,664 0	of, Atter	n= 4%, Lag= 1.1 min
Primary	=	0.68 cfs @	12.09 hrs, \	Volume=	1,664 0	of	-
Routed	to Link F	P-SS : Pr. Sto	orm Sewer				

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs / 3 Peak Elev= 9.54' @ 12.09 hrs Surf.Area= 3,306 sf Storage= 696 cf

Plug-Flow detention time= 161.8 min calculated for 1,661 cf (72% of inflow) Center-of-Mass det. time= 65.5 min (861.2 - 795.7)

Volume	Inv	ert Ava	il.Storage	Storag	e Description	
#1	8.	00'	523 cf	Stone	Storage (Prisma	tic)Listed below (Recalc)
				1,308 d	of Overall x 40.0%	% Voids
#2	9.	17'	278 cf	Paver	Storage (Prisma	tic) Listed below (Recalc)
				928 cf	Overall x 30.0%	Voids
#3	9.:	50'	1,118 cf	Open /	Air Storage Abov	ve Pavers (Prismatic)Listed below (Recalc)
			1,920 cf	Total A	vailable Storage	
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
8.0	00	1,118		0	0	
9.1	17	1,118		1,308	1,308	
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cub	c-feet)	(cubic-feet)	
9.1	 17	1.118		0		
9.5	50	1.118		369	369	
10.5	50	0		559	928	
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cub	c-feet)	(cubic-feet)	
9.5	50	1.118		0		
10.5	50	1,118		1,118	1,118	
Device	Routing	In	vert Out	et Devic	es	
#1	Primary	g	.50' Asy	mmetric	al Weir, C= 3.27	
	,		Offs	et (feet)	0.00 0.01 9.40	31.70 40.99 41.00
			Heig	ght (feet)	1.00 0.50 0.00	0.00 0.50 1.00

Primary OutFlow Max=0.66 cfs @ 12.09 hrs HW=9.54' (Free Discharge) 1=Asymmetrical Weir (Weir Controls 0.66 cfs @ 0.65 fps)

Hydrograph Inflow 0.71 cfs Primary 0.75 Inflow Area=8,54 0.68 cfs 0.7 Peak Elev=9.54' 0.65 0.6 Storage=696 cf 0.55 0.5 (classification) 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0-14 15 16 17 18 19 20 21 22 1 ż ż 8 ģ 10 11 12 13 23 Ó 4 5 6 7 24 Time (hours)

Pond RD2: R.O.W. Porous Driveway 2

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond RD2: R.O.W. Porous Driveway 2

Elevation	Storage	Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)	(feet)	(cubic-feet)
0.00 8.02	0	9.00	4/4 /83	10.12	1,471
8.02	18	9.00	403	10.14	1,435
8.06	27	9.12	501	10.18	1,545
8.08	36	9.14	510	10.20	1.569
8.10	45	9.16	519	10.22	1,593
8.12	54	9.18	527	10.24	1,618
8.14	63	9.20	533	10.26	1,642
8.16	72	9.22	540	10.28	1,666
8.18	80	9.24	547	10.30	1,689
0.20 8.22	09	9.20	560	10.32	1,713
8 24	107	9.30	567	10.34	1,760
8.26	116	9.32	574	10.38	1,783
8.28	125	9.34	580	10.40	1,806
8.30	134	9.36	587	10.42	1,829
8.32	143	9.38	594	10.44	1,852
8.34	152	9.40	600	10.46	1,875
8.36	161	9.42	607	10.48	1,897
8.38 8.40	170	9.44	614 620	10.50	1,920
8 42	188	9.40	627		
8.44	197	9.50	634		
8.46	206	9.52	663		
8.48	215	9.54	692		
8.50	224	9.56	721		
8.52	233	9.58	749		
8.54 8.56	241	9.60	778		
8.50	250	9.02	834		
8.60	268	9.66	862		
8.62	277	9.68	890		
8.64	286	9.70	918		
8.66	295	9.72	946		
8.68	304	9.74	973		
8.70	313	9.76	1,000		
8 74	331	9.70	1,020		
8.76	340	9.82	1,082		
8.78	349	9.84	1,109		
8.80	358	9.86	1,135		
8.82	367	9.88	1,162		
8.84	376	9.90	1,188		
8.80	385	9.92	1,215		
8 90	394 402	9.94	1,241		
8.92	411	9.98	1,293		
8.94	420	10.00	1,319		
8.96	429	10.02	1,344		
8.98	438	10.04	1,370		
9.00	447	10.06	1,395		
9.02	450	10.08	1,420		
9.04	400	10.10	1,440		

Summary for Link E-LIS: Ex. Long Island Sound

Inflow A	Area =	101,604 sf,	26.77% Impervious,	Inflow Depth >	3.53"	for 25-Year event
Inflow	=	6.22 cfs @	12.09 hrs, Volume=	29,903 cf		
Primary	/ =	6.22 cfs @	12.09 hrs, Volume=	29,903 cf	, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Link E-LIS: Ex. Long Island Sound

Summary for Link E-SS: Ex. Storm Sewer

Inflow Are	a =	35,355 sf	, 57.19% Impervious,	Inflow Depth >	4.53"	for 25-Year event
Inflow	=	4.38 cfs @	12.07 hrs, Volume=	13,343 c	f	
Primary	=	4.38 cfs @	12.07 hrs, Volume=	13,343 c	f, Atten=	= 0%, Lag= 0.0 min
Routed	l to Link	E-LIS : Ex. Lo	ong Island Sound			-

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Link E-SS: Ex. Storm Sewer

Summary for Link P-LIS: Pr. Long Island Sound

Inflow Are	ea =	101,604 sf, 33.24% Impervious,	Inflow Depth > 3.18"	for 25-Year event
Inflow	=	8.62 cfs @ 12.10 hrs, Volume=	26,933 cf	
Primary	=	8.62 cfs @ 12.10 hrs, Volume=	26,933 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Link P-LIS: Pr. Long Island Sound

Summary for Link P-SS: Pr. Storm Sewer

Inflow Are	a =	11,755 sf,	58.19% Impervious,	Inflow Depth >	2.43" 1	for 25-Year event
Inflow	=	0.91 cfs @	12.09 hrs, Volume=	2,382 cf	•	
Primary	=	0.91 cfs @	12.09 hrs, Volume=	2,382 cf	, Atten=	: 0%, Lag= 0.0 min
Routed to Link P-LIS : Pr. Long Island Sound						

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.03 hrs

Link P-SS: Pr. Storm Sewer

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 Hydro	<i>Type III 24-hr 50-Year Rainfall=7.43"</i> Printed 1/27/2023 Page 264
Time span=0.00- Runoff by SCS TR Reach routing by Stor-Ind+Tra	-24.00 hrs, dt=0.03 hrs, 801 points -20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment 1PD: Lot 1 Porous Drivewa	ay Runoff Area=2,664 sf 85.62% Impervious Runoff Depth>6.56" Tc=5.0 min CN=92.68 Runoff=0.44 cfs 1,455 cf
Subcatchment 1PP: Lot 1 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>7.24" Tc=5.0 min CN=98.46 Runoff=0.51 cfs 1,784 cf
Subcatchment 2PD: Lot 2 Porous Drivewa	ay Runoff Area=2,875 sf 82.09% Impervious Runoff Depth>6.40" Tc=5.0 min CN=91.37 Runoff=0.47 cfs 1,534 cf
Subcatchment 2PP: Lot 2 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>7.24" Tc=5.0 min CN=98.46 Runoff=0.51 cfs 1,784 cf
Subcatchment 3PD: Lot 3 Porous Drivewa	ay Runoff Area=3,030 sf 81.09% Impervious Runoff Depth>6.36" Tc=5.0 min CN=91.00 Runoff=0.50 cfs 1,605 cf
Subcatchment 3PP: Lot 3 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff Depth>7.24" Tc=5.0 min CN=98.46 Runoff=0.51 cfs 1,784 cf
Subcatchment 4PD: Lot 4 Porous Drivewa	ay Runoff Area=2,985 sf 89.82% Impervious Runoff Depth>6.74" Tc=5.0 min CN=94.23 Runoff=0.50 cfs 1,676 cf
Subcatchment 4PP: Lot 4 Porous Patio	Runoff Area=3,073 sf 100.00% Impervious Runoff Depth>7.24" Tc=5.0 min CN=98.44 Runoff=0.53 cfs 1,854 cf
Subcatchment N: Ex. North Basin	Runoff Area=35,355 sf 57.19% Impervious Runoff Depth>5.33" Tc=5.0 min CN=82.16 Runoff=5.13 cfs 15,718 cf
Subcatchment NB: North Bypass	Runoff Area=3,209 sf 8.41% Impervious Runoff Depth>3.34" Tc=5.0 min CN=64.11 Runoff=0.29 cfs 893 cf
Subcatchment RPD1: R.O.W. Porous	Runoff Area=3,517 sf 77.77% Impervious Runoff Depth>6.21" Tc=5.0 min CN=89.77 Runoff=0.57 cfs 1.821 cf
Subcatchment RPD2: R.O.W. Porous	Runoff Area=5,029 sf 76.26% Impervious Runoff Depth>6.15" Tc=5.0 min CN=89.22 Runoff=0.81 cfs 2.577 cf
Subcatchment S: Ex. South Basin Flow Length=100' Slo	Runoff Area=66,249 sf 10.54% Impervious Runoff Depth>3.69"
Subcatchment SB: South Bypass	Runoff Area=66,354 sf 7.85% Impervious Runoff Depth>3.59"
Pond 1D: Lot 1 Porous Driveway	Peak Elev=9.93' Storage=193 cf Inflow=0.44 cfs 1,558 cf
Pond 1P: Lot 1 Permeable Patio	Peak Elev=9.03' Storage=559 cf Inflow=0.51 cfs 1,784 cf Outflow=0.50 cfs 1,237 cf
2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc.	Type III 24-hr 50-Year Rainfall=7.43" Printed 1/27/2023
--	--
<u>Hydrocade 10.10-0a s/1106721 € 2020 Hydrocad 3</u>	onware solutions LLC Page 200
Pond 2D: Lot 2 Porous Driveway	Peak Elev=9.93' Storage=356 cf Inflow=0.47 cfs 1,718 cf Outflow=0.46 cfs 1,391 cf
Pond 2P: Lot 2 Permeable Patio	Peak Elev=8.78' Storage=568 cf Inflow=0.51 cfs 1,784 cf Outflow=0.50 cfs 1,226 cf
Pond 3D: Lot 3 Porous Driveway	Peak Elev=9.93' Storage=357 cf Inflow=0.50 cfs 1,605 cf Outflow=0.49 cfs 1,279 cf
Pond 3P: Lot 3 Permeable Patio	Peak Elev=8.78' Storage=568 cf Inflow=0.51 cfs 1,784 cf Outflow=0.50 cfs 1,226 cf
Pond 4D: Lot 4 Porous Driveway	Peak Elev=9.04' Storage=550 cf Inflow=0.50 cfs 1,676 cf Outflow=0.50 cfs 1,139 cf
Pond 4P: Lot 4 Permeable Patio	Peak Elev=8.78' Storage=471 cf Inflow=0.53 cfs 1,854 cf Outflow=0.52 cfs 1,395 cf
Pond RD1: R.O.W. Porous Driveway 1 Poromary=0.01 cfs 164 cf Secondary=0.01 cfs	eak Elev=12.00' Storage=1,373 cf Inflow=0.57 cfs 1,821 cf s 102 cf Tertiary=0.01 cfs 184 cf Outflow=0.03 cfs 450 cf
Pond RD2: R.O.W. Porous Driveway 2	Peak Elev=9.55' Storage=702 cf Inflow=0.81 cfs 2,742 cf Outflow=0.78 cfs 2,106 cf
Link E-LIS: Ex. Long Island Sound	Inflow=7.46 cfs 36,075 cf Primary=7.46 cfs 36,075 cf
Link E-SS: Ex. Storm Sewer	Inflow=5.13 cfs 15,718 cf Primary=5.13 cfs 15,718 cf
Link P-LIS: Pr. Long Island Sound	Inflow=10.32 cfs 33,125 cf Primary=10.32 cfs 33,125 cf
Link P-SS: Pr. Storm Sewer	Inflow=1.07 cfs 2,999 cf Primary=1.07 cfs 2,999 cf

Total Runoff Area = 203,208 sf Runoff Volume = 74,687 cf Average Runoff Depth = 4.41" 70.00% Pervious = 142,236 sf 30.00% Impervious = 60,972 sf

2008 HydroCAD (2023-01-27)	Type III 24-hr 100-Year Rair	nfall=8.35"
Prepared by Redniss & Mead, Inc.	Printed	1/27/2023
HydroCAD® 10.10-6a s/n 08721 © 2020 Hydr	droCAD Software Solutions LLC	Page 316
Time span=0.00 Runoff by SCS TF Reach routing by Stor-Ind+T	00-24.00 hrs, dt=0.03 hrs, 801 points TR-20 method, UH=SCS, Weighted-CN Trans method - Pond routing by Stor-Ind method	
Subcatchment 1PD: Lot 1 Porous Drivew	way Runoff Area=2,664 sf 85.62% Impervious Runoff I Tc=5.0 min CN=92.68 Runoff=0.50)epth>7.47" cfs 1,658 cf
Subcatchment 1PP: Lot 1 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff I Tc=5.0 min CN=98.46 Runoff=0.57)epth>8.16" cfs_2,010 cf
Subcatchment 2PD: Lot 2 Porous Drivew	way Runoff Area=2,875 sf 82.09% Impervious Runoff E Tc=5.0 min CN=91.37 Runoff=0.54)epth>7.31" cfs_1,751 cf
Subcatchment 2PP: Lot 2 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff I Tc=5.0 min CN=98.46 Runoff=0.57)epth>8.16" cfs_2,010 cf
Subcatchment 3PD: Lot 3 Porous Drivew	way Runoff Area=3,030 sf 81.09% Impervious Runoff [Tc=5.0 min CN=91.00 Runoff=0.56)epth>7.27" cfs_1,835 cf
Subcatchment 3PP: Lot 3 Porous Patio	Runoff Area=2,956 sf 100.00% Impervious Runoff I Tc=5.0 min CN=98.46 Runoff=0.57 d)epth>8.16" cfs_2,010 cf
Subcatchment 4PD: Lot 4 Porous Drivew	way Runoff Area=2,985 sf 89.82% Impervious Runoff I Tc=5.0 min CN=94.23 Runoff=0.57)epth>7.65" cfs_1,904 cf
Subcatchment 4PP: Lot 4 Porous Patio	Runoff Area=3,073 sf 100.00% Impervious Runoff I Tc=5.0 min CN=98.44 Runoff=0.60 d)epth>8.16" cfs_2,089 cf
Subcatchment N: Ex. North Basin	Runoff Area=35,355 sf 57.19% Impervious Runoff I Tc=5.0 min CN=82.16 Runoff=5.93 cf)epth>6.21" s_18,289 cf
Subcatchment NB: North Bypass	Runoff Area=3,209 sf 8.41% Impervious Runoff I Tc=5.0 min CN=64.11 Runoff=0.36)epth>4.07" cfs 1,089 cf
Subcatchment RPD1: R.O.W. Porous	Runoff Area=3,517 sf 77.77% Impervious Runoff [Tc=5.0 min CN=89.77 Runoff=0.65)epth>7.12" cfs_2,086 cf
Subcatchment RPD2: R.O.W. Porous	Runoff Area=5,029 sf 76.26% Impervious Runoff [Tc=5.0 min CN=89.22 Runoff=0.92)epth>7.05" cfs_2,956 cf
Subcatchment S: Ex. South Basin Flow Length=100' SI	Runoff Area=66,249 sf 10.54% Impervious Runoff I Slope=0.0080 '/' Tc=19.8 min CN=67.46 Runoff=5.38 cf)epth>4.45" s_24,565 cf
Subcatchment SB: South Bypass	Runoff Area=66,354 sf 7.85% Impervious Runoff [Flow Length=140' Tc=9.0 min CN=66.46 Runoff=6.98 cf)epth>4.34" s_24,013 cf
Pond 1D: Lot 1 Porous Driveway	Peak Elev=9.93' Storage=195 cf Inflow=0.50 Outflow=0.49	ofs 1,820 cf ofs 1,652 cf
Pond 1P: Lot 1 Permeable Patio	Peak Elev=9.03' Storage=561 cf Inflow=0.57 Outflow=0.57	cfs 2,010 cf cfs 1,461 cf

2008 HydroCAD (2023-01-27) Prepared by Redniss & Mead, Inc. HydroCAD® 10.10-6a s/n 08721 © 2020 HydroCAD S	Type III 24-hr 100-Year Rainfall=8.35" Printed 1/27/2023 oftware Solutions LLC Page 317
Pond 2D: Lot 2 Porous Driveway	Peak Elev=9.94' Storage=358 cf Inflow=0.54 cfs 2,043 cf Outflow=0.53 cfs 1,716 cf
Pond 2P: Lot 2 Permeable Patio	Peak Elev=8.78' Storage=569 cf Inflow=0.57 cfs 2,010 cf Outflow=0.56 cfs 1,453 cf
Pond 3D: Lot 3 Porous Driveway	Peak Elev=9.94' Storage=359 cf Inflow=0.56 cfs 1,835 cf Outflow=0.55 cfs 1,508 cf
Pond 3P: Lot 3 Permeable Patio	Peak Elev=8.78' Storage=569 cf Inflow=0.57 cfs 2,010 cf Outflow=0.56 cfs 1,453 cf
Pond 4D: Lot 4 Porous Driveway	Peak Elev=9.04' Storage=551 cf Inflow=0.57 cfs 1,904 cf Outflow=0.56 cfs 1,370 cf
Pond 4P: Lot 4 Permeable Patio	Peak Elev=8.79' Storage=472 cf Inflow=0.60 cfs 2,089 cf Outflow=0.59 cfs 1,631 cf
Pond RD1: R.O.W. Porous Driveway 1 Perimary=0.03 cfs 261 cf Secondary=0.02 cfs	eak Elev=12.00' Storage=1,377 cf Inflow=0.65 cfs 2,086 cf s 162 cf Tertiary=0.03 cfs 292 cf Outflow=0.07 cfs 715 cf
Pond RD2: R.O.W. Porous Driveway 2	Peak Elev=9.55' Storage=709 cf Inflow=0.92 cfs 3,216 cf Outflow=0.89 cfs 2,581 cf
Link E-LIS: Ex. Long Island Sound	Inflow=8.81 cfs 42,854 cf Primary=8.81 cfs 42,854 cf
Link E-SS: Ex. Storm Sewer	Inflow=5.93 cfs 18,289 cf Primary=5.93 cfs 18,289 cf
Link P-LIS: Pr. Long Island Sound	Inflow=12.17 cfs 39,927 cf Primary=12.17 cfs 39,927 cf
Link P-SS: Pr. Storm Sewer	Inflow=1.25 cfs 3,670 cf Primary=1.25 cfs 3,670 cf
Total Dunoff Area - 202 200 of Dun	off Volume - 99 265 of Average Dunoff Donth - 5 24

Total Runoff Area = 203,208 sf Runoff Volume = 88,265 cf Average Runoff Depth = 5.21" 70.00% Pervious = 142,236 sf 30.00% Impervious = 60,972 sf

Appendix F

Draft Operation and Maintenance Agreement

Block ____

AGREEMENT COVENANT

AGREEMENT made this ______ by and between and the CITY OF STAMFORD, a municipal corporation lying within the County of Fairfield and State of Connecticut, acting herein by its duly authorized Mayor, Caroline Simmons (hereinafter referred to as the "City"), and the ENVIRONMENTAL PROTECTION BOARD OF THE CITY OF STAMFORD, acting herein by its duly authorized Chairman, Gary H. Stone (hereinafter referred to as the "EPB").

WITNESSETH:

WHEREAS, OWNER has commenced the planning and construction of

on a parcel of land owned by them and as more particularly described on Schedule "A", attached hereto and made a part hereof (the "Property").

WHEREAS, certain drainage facilities ("Drainage Facilities"), including but not limited to ______ as more particularly described on Schedule "B" attached (the "Construction Plans") shall be installed in connection with the aforesaid construction and in accordance with the Construction Plans and ______ issued therefore, (the "Permit") and;

WHEREAS, OWNER, the CITY and EPB share a joint concern that the Drainage Facilities be maintained in a functioning condition so as to avoid pollution of surface and groundwaters, flooding and/or improper drainage.

(1)

NOW, THEREFORE, in consideration of ten dollars and other good and valuable consideration receipt of which is hereby acknowledged by the OWNER, it is hereby agreed as follows:

- 1) OWNER shall clean the drainage facilities or cause such facilities to be cleaned by periodic removal of accumulated sediment and debris in a good and workman-like manner, at least two (2) times during every twelve (12) month period, which times shall be in the period between April and June and between October and December and more often as the City may determine to be necessary.
- 2) OWNER shall sweep, or cause to be swept, garage facilities, driveways and roadway surfaces located on the Property at least once per calendar quarter.
- 3) OWNER shall utilize only sand or calcium chloride in connection with the de-icing of areas within the Property meaning and intending that road salt (Sodium Chloride) shall not be used for said purpose.
- 4) OWNER shall repair or replace any defects or defective drainage facilities so as to maintain the drainage facilities, at all times, in a fully functional capacity.
- 5) OWNER shall file as-built drainage plans with the EPB immediately upon the completion of work. Said plans shall be prepared by a professional engineer/surveyor registered in the State of Connecticut.

(2)

- 6) OWNER grants the CITY and/or EPB, its agents, and employees, the right to enter the Property at all reasonable times upon twentyfour (24) hours notice to the OWNER for the purpose of inspecting the Property to determine if OWNER is complying with the requirements hereunder. A representative of the Owner shall have the right to accompany the City and/or EPB on their inspection of the Property.
- 7) If, after an inspection is made pursuant to Paragraph Six (6) hereof, the CITY and/or EPB determines that the owner has failed to comply with the aforesaid undertakings, then the CITY and/or EPB shall give written notice of said determination to the then OWNER of the Property which notice shall also specify the said failure. Said notice shall be sent by registered or certified mail to the last known address of said Owner. If the Owner disputes the claim, he shall give written notice thereof to City and/or EPB within ten (10) days of receipt of said notice, and the EPB shall hold a hearing as promptly as possible to decide the merits of the disputed claim. If the claim is not disputed within said ten (10) days, the OWNER shall have thirty (30) days from the receipt of said notice to correct said failure, unless it is impossible to cure said defect within said time, in which case, necessary repairs shall be immediately commenced the and diligently pursued to completion within a reasonable time.
- 8) If the said failure is not remedied within the time frame herein stated, the CITY and/or EPB may proceed to cure the same and charge the actual cost thereof to the OWNER of the Property.

(3)

- 9) OWNER agrees to reimburse the CITY and/or EPB for reasonable legal fees and court costs if it becomes necessary for the CITY and/or EPB to sue for reimbursement of sums expended by the CITY and/or EPB in performance of OWNER'S obligation.
- 10) OWNER agrees and covenants to indemnify and save harmless the CITY and the EPB against any and all claims, suits, actions or judgments arising out of the delay in the performance of any of their obligations pursuant to this Agreement.
- 11) OWNER agrees that this covenant and restriction shall apply to and run with the land. It shall be binding on all future owners, administrators, executors, successors and assigns.
- 12) The OWNER hereby represents to the CITY and EPB that he/she is the owner, in fee simple, of all of the property described in "Schedule A" attached hereto and made a part hereof.
- 13) OWNER agrees that this Agreement and restrictive covenant upon execution of the same, shall be recorded on the land records at the OWNER'S expense at the time that a permit is issued for the Property herein and while the OWNER is in title.
- 14) OWNER agrees not to assert the invalidity of this document.
- 15) OWNER agrees that nothing herein shall be construed to be a limitation upon the right of the EPB to assert and enforce any rights it may have under federal, state or City statute, ordinance or regulation.

(4)

16) This agreement shall be governed by the laws of the State of Connecticut.

IN WITNESS WHEREOF, the said parties hereto have hereunto set their hands and seals, the day and year first above written.

WITNESSED:

 THE CITY OF STAMFORD
 BY:
Caroline Simmons
Its duly authorized Mayor
 THE ENVIRONMENTAL PROTECTION
BOARD
 BY:
Gary H. Stone
Its duly authorized Chairman
 OWNER
BY:

(Owner's Name)

(Acknowledgement on the Following Page)

STATE OF CONNECTICUT }

ss: STAMFORD Date: COUNTY OF FAIRFIELD }

Personally appeared Caroline Simmons, Mayor of the City of Stamford, signer and sealer of the foregoing Instrument, and acknowledged the same to be his free act and deed and the free act and deed of said City, before me.

> Commissioner of the Superior Court or Notary Public

STATE OF CONNECTICUT } ss: STAMFORD Date: COUNTY OF FAIRFIELD

Personally appeared Gary H. Stone, Chairman of the Environmental Protection Board of the City of Stamford, signer and sealer of the foregoing Instrument, and acknowledged the same to be his free act and deed and the free act and deed of said Commission, before me.

> Commissioner of the Superior Court or Notary Public

STATE OF CONNECTICUT }

COUNTY OF FAIRFIELD }

ss: STAMFORD Date:

Personally appeared ______ signer and sealer of the foregoing instrument, and acknowledged the same to be free act and deed, before me.

> Commissioner of the Superior Court or Notary Public

SCHEDULE "B"

Appendix G

DCIA Tracking Spreadsheet

Checklist for Stormwater Management Report

	Note to user: complete all cells of this color	r only	
	Part 1: General Information		
Project Name	40 Signal Road		
Project Address	40 Signal Road, Stamford, CT		
Project Applicant	Sound Beach Landing, LLC		
Date of Submittal	27-Jan-23		
Tax Account Number	002-8017 & 003-1160		
	Part 2: Project Details		
1. What type of develor	pment is this? (choose from dropdown)	Redevelopment	
2. What is the total area	a of the project site?	101,604	ft ²
3. What is the total area	a of land disturbance for this project?	76,500	ft ²
4. Does project site drai	n to High Quality Waters, a Direct Waterfront, or within 500 ft. of	,	
Tidal Wetlands? (Yes/N	o)	Yes	
5. What is the <u>current</u> D	PCIA for the site?	20,219	ft ²
6. Will the proposed de	velopment increase DCIA (without consideration of proposed	No	
stormwater manageme	nt)? (Yes/No)		
7. What is the proposed	I-development total impervious area for the site?	33,770	ft ²
	Part 3: Water Quality Target Total		
Does Standard 1 apply	based on information above?	Yes]
Water Quality Volume (WQV) 2956.1 ft ³		ft ³	
Standard 1 requirement Retain WQV on-site			
Required retention volume 2956.1 ft ³		ft ³	
Provided retention volu	me for proposed development	5,470.0	ft ³
	Part 4: Proposed DCIA Tracking		
Pre-development total	impervious area	27,202	ft ²
Current DCIA		20,219	ft ²
Proposed-development	total impervious area	33,770	ft ²
Proposed-development	DCIA (after stormwater management)	270	ft ²
Net change in DCIA from	m pre-development to proposed-development	-19,949	ft ²
Part 5: Post-Development (As-Built Certified) DCIA Tracking			
<u>Post-development</u> (per	as-built) total impervious area		ft ²
Post-development (per	as-built) DCIA (after stormwater management)		ft ²
Net change in DCIA from	m <u>pre-development</u> to <u>post-development</u>		ft ²
	Certification Statement		
I hereby certify that the information contained in this worksheet is true and correct.			
Engineer's Cignoture	Data Excise and Carl		
Engineer's Signature	Date Engineer's Seal		

CHECKLISTS

Project Name:	
Dreiget Address	
Property Owner(s)	
- - - - - - - - - -	
Engineer's Signature	_ Date:

All checklists must be completed and submitted. Provide a brief explanation for any items not provided. Check boxes as completed or N/A as not applicable.

Existing Conditions Plan
Stormwater Management Report
Stormwater Management Plan / Construction Plan
Certificate of Occupancy

Checklist for Existing Conditions Plan

I. General Information

Site address
Orientation, block, zone, City, street name
Applicant name and legal address
Surveyor name, address, contact information
North arrow, bar scale, horizontal and vertical datum
24" x 36" sheet size unless otherwise approved
Existing conditions survey shall be prepared in accordance with the Minimum Standards for Surveys and Maps in the State of Connecticut. The class of survey shall be A-2 and T-2 and shall be represented as such on the map. The base map shall be sealed and signed by a Professional Land Surveyor licensed in the State of Connecticut.
Drawing scale shall be set at $1'' = 20'$ or $1'' = 40'$ when possible

II. Existing Conditions Plan Elements

Show and label all property boundaries with linear bearing / distances and curve information
Required zoning setbacks
Show and label monument information
Show and label at least one permanent benchmark on the parcel with porthing, easting and elevation
Lobel ediscent property evenestic information
Existing contours based on NAVD 88 (no exceptions) at 2 foot contour interval or 1 foot contour interval when slope is flatter than 2 percent at a minimum of 20 ft. beyond the property boundaries of the subject parcel
Show spot elevations at low points, high points, and where topography is flatter than 2 percent
All buildings and structures (label current use and finished floor elevations)
All pavement, parking, driveways, property access points
All roadways, streets, and rights-of-way. Label streets as public or private with street name
All patios, decks, walkways, sidewalks, curb ramps (both adjacent to and opposite and existing roadways or intersections)
Show and label (size, material, inverts) all existing utilities (overhead and underground) within the right-of-way and the project site (label ownership) including but not limited to water, gas and electrical services, wells, storm sewers, sanitary sewers and subsurface sewerage disposal systems.
Show and label existing conveyance systems (swales, ditches, storm drains) including dimensions, elevations, sizes, slopes, and direction of flow
Show and label boundaries of all easements, both public and private, with type, owner, and width
Show and label all other existing features and improvements (e.g. light poles, mature trees of 8" (dbh) diameter or greater, vegetation, walls with top and bottom elevations, fences, pavement markings)

III. Resource Areas

N/A		
,	Show and label limits of inland wetlands, tidal wetlands and any associated setbacks.	
	Show and label existing natural site features including tree canopy, outcroppings, permanent and intermittent watercourses, waterbodies, streams	
	Show and label limits of floodplain and floodway along with FIRM references (Community Number, Panel, Suffix, and Date) including any effective Letters of Map Revision/Amendment, zone designation and elevation.	
N/A	Show and label any Conservation Easement Areas	
	Show and label Connecticut Coastal Jurisdiction Line (CJL)	
	Show and label existing steep slopes (25% and greater)	

Checklist for Stormwater Management Report

I. Project Report

Α.	Applicant / Site Information
	Applicant name, legal address, contact information (email & phone)
	Engineers name, legal address, contact information (email & phone)
	Site address and legal description
	Current / proposed zoning and land use
	Site vicinity map (8.5" x 11")

B. <u>Project Description and Purpose</u>

Project description including proposed project elements and anticipated construction schedule

C. Existing Conditions Description

Site area, ground cover, vegetation, features (roads, buildings, utilities, etc.)
Site topography, slopes, drainage patterns, conveyances systems (swales, storm drains, etc.), stormwater discharge locations
Receiving waterbody information including stormwater impairments and TMDL information (See the most recent State of Connecticut Integrated Water Quality Report)
Site soils information including soil types, hydrologic soil group, bedrock / outcroppings, groundwater elevation, significant geologic features
Provide NRCS Soils Mapping
Resource protection areas (wetlands, streams, lakes, etc.), buffers, floodplains, floodways

D. Summary of Applicable General Design Criteria

Methodology, design storm frequency
Hydrologic design criteria
Hydraulic design criteria
Flood hazard areas

Applying under "Lite" Stormwater Management: Skip to Section I

(Refer to Flow Chart on page vii of the City of Stamford Stormwater Drainage Manual)

E. <u>Project Type in Accordance with Standard 1 Definitions</u>

Area of disturbance, receiving waterbody classification (High Quality, Tidal Wetlands, Direct Waterfront)
Project type (development, redevelopment, linear development)
Pollutant reduction standard per flowchart Section 2.4

F. Summary of LID Site Constraints

Description of sensitive areas for protection
Mature tree inventory, which shall include 8-inch (dbh) diameter trees or greater
Steep slopes
Ledge and bedrock depth
Seasonal high groundwater elevation
Pollutant hotspots
Summary of infiltration rates

G. <u>Summary of Proposed Stormwater Treatment Practices</u>

0.	Summary of Troposed Stormwater Treatment Tradilees
	Proposed LID controls (i.e. minimize impervious, minimize DCIA, minimize disturbance, increase time of
	concentrations, other LID controls and strategies)
	Location, size, types
	Design criteria and references
	Stormwater treatment practice, drainage area characteristics / details

H. Summary of Compliance with Standards 1

Required pollutant reduction criteria
Provided pollutant reduction (WQV) by stormwater treatment practice
Summary of compliance with Standard 1

I. Summary of Compliance with Standards 2, 3, and 4

	Description of proposed stormwater management system				
	Pre-development site hydrology with delineation of each watershed area and sub-basin				
	Post-development site hydrology with delineation of each watershed area and sub-basin				
	Comparison table of pre- and post-development hydrology, peak flow, volume, and percent difference				
	Summary table of watershed areas and sub-basin areas, time of concentration and runoff coefficients				
	Summary table demonstrating the 2-year, 24-hour post development peak flow rate is less than or equal to the				
N/A	lowest of either:				
,	- The pre-development 1-year, 24-hour storm peak flow rate				
_	- 50 percent of the pre-development 2-year, 24-hour storm peak flow rate				
N/A	Conveyance protection, emergency outlet sizing				
N/A	A Hydraulic grade line summary and tail water elevation used in analysis				
	Construction erosion and sediment control description. Standard 3				
	Operation and Maintenance, maintenance tasks and schedule on construction plans per Standard 4				

J.	Summar	y of Complianc	e with Applicable	e Drainage Facilit	y Design Re	quirements

Description of applicable design requirements and compliance

Description of proposed drainage facilities and compliance

K. <u>Stormwater Management Report</u>

Signed and stamped by professional engineer licensed in the State of Connecticut
Drainage impact statement in accordance with Standard 5B.

II. Supporting Calculations (as appendix to Project Report)

Applying under "Lite" Stormwater Management: Skip to Section N

L. <u>Water Quality Volume / Water Quality Flow Calculations</u>

Calculations demonstrating the total Water Quality Volume generated by the post-development site and the
required retention/treatment volume per Standard 1 in cubic feet.
Calculations demonstrating the total Water Quality Volume retained/treated by each stormwater treatment
practice and the total Water Quality Volume generated by the post-development contributing drainage area to
each stormwater treatment practice

M. Stormwater Treatment Practice Sizing Calculations

Hydrologic and Hydraulic Design Calculations

Calculations demonstrating how each stormwater treatment practice has been designed and sized in accordance with the Structural Stormwater BMP Design references in Appendix B. Calculations will vary by stormwater treatment practice, but a minimum, applicants shall provide calculations in accordance with design criteria from the Connecticut Stormwater Quality Manual.

_N.

N/A	Stream channel protection, Standard 2A
	Conveyance protection, Standard 2B
REQUESTED	Peak flow control (1-year, 2-year, 5-year, 10-year, 25-year, and 50-year storms), Standard 2C
N/A	Inlet analysis
N/A	Gutter flow (Site by site basis as requested by Engineering Bureau)
	Storm sewers and culverts (velocities, capacity, hydraulics)
N/A	Hydraulic grade line required when pipe is flowing at full capacity Provide existing and proposed summary table Provide existing and proposed mapping, label structures
N/A	Detention facilities (outlet structure, stage/storage, freeboard)
N/A	Emergency outlet sizing, safely pass the 100 year storm, Standard 2D
N/A	Outlet protection calculations, based on conveyance protection (i.e. riprap, energy dissipater)

Downstream analysis (Site by site basis as required by the Engineering Bureau)

O. <u>Hydrologic and Hydraulic Model, Existing and Proposed</u>

Drainage routing diagram
Summary
Storage pond input

N/A

Downstream analysis, Standard 2E

III. Supporting Mapping (as appendix to Project Report)

Q. Pre-Development Drainage Basin Area Mapping

11" x 17" or 8.5" x 11" sheet size
Topography, drainage patterns, drainage area boundaries and sub basins, flow paths, times of concentration
Locations of existing stormwater discharges
Perennial and intermittent streams, wetlands, and floodplain / floodways
NRCS soil types, locations, boring locations, infiltration testing locations
Vegetation and groundcover
Existing roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, decks and other structures
 Location, size, type of existing structural stormwater controls, facilities and conveyance systems

R. Post-Development Drainage Basin Area Mapping

11" x 17" or 8.5" x 11" sheet size
Topography, drainage patterns, drainage area boundaries and sub basins, flow paths, times of concentration
Locations of proposed stormwater discharges
Perennial and intermittent streams, wetlands, and floodplain / floodways
NRCS soil types, locations, boring locations, infiltration testing locations
Vegetation, ground cover and proposed limits of clearing/disturbance
Proposed, roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, decks and other structures
Location, size, type of proposed structural stormwater controls, facilities and conveyance systems

IV. DCIA Tracking Worksheet (as appendix to Project Report)

DCIA Tracking Worksheet (Use form found in Appendix E)

V. Proposed LID Review Map

Applying under "Lite" Stormwater Management - Proposed LID Review Map NOT required.

Α.	General
	Site address
	Applicant name, legal address, contact information
	Engineers name, address, contact information
	North arrow, bar scale, horizontal and vertical datum
	Drawing scale shall be set at 1"=20' or 1"=40' when possible
	Signed and stamped by a Licensed Professional Engineer in the State of Connecticut
	11" x 17" or 24" x 36" sheet size unless otherwise approved
	Existing and proposed contours based on NAVD 88 at 2 foot contour interval or 1 foot contour interval when slope is flatter than 2 percent
	Locations of existing stormwater discharges
	Roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, and decks and other structures
	Location, size, ownership of stormwater conveyance systems (swales, pipes, etc.)

B. <u>LID Constraints:</u>

	Boring / test pit locations
	Infiltration testing locations and results
	Vegetation and proposed limits of clearing / disturbance
	NRCS soils mapping
	Steep slopes
	Surface waters / Perennial and intermittent streams
	Resource protection areas and buffers, wetlands, floodplain / floodways
	Existing vegetation and mature trees, which shall include 8-inch (dbh) diameter trees or greater
	Poor soils (HSG C & D)
	Shallow bedrock / ledge
	Seasonal high groundwater elevation
	Other site constraints (e.g. brownfield caps)
~	

C.	Proposed Stormwater Treatment Measures:
	Location, size, type, limits, and WQV provided by each proposed stormwater treatment practices
	Drainage area to each proposed stormwater treatment practice (total area, impervious area, WQV)
D.	Site Summary Table:

Total site area, disturbed area, pre- and post-development impervious areas
Required pollutant reduction volume (retention or detention)
Provided pollutant reduction volume (retention or detention)

Checklist for Stormwater Management Plan / Construction Plans

A. <u>General</u>

Site orientation, address and legal description
Applicant name, legal address, contact information
Engineers name, address, contact information
North arrow, bar scale, horizontal and vertical datum
Drawing scale shall be set at 1"=20' or 1"=40' when possible
Stamped by a Licensed Professional Engineer in the State of Connecticut
24" x 36" sheet size unless otherwise approved

B. Site Development Plans

City of Stamford Standard Notes
As required by the Drainage Maintenance Agreement, provide a written narrative describing the nature of the proposed development activity and the program for operation and maintenance of drainage facilities and control measures throughout the life of the project.
Existing and proposed contours based on NAVD 88 at 2 foot contour interval or 1 foot contour interval when slope is flatter than 2 percent
All required spot elevations to clearly depict positive pitch
Top and bottom elevation of all walls
Roads, buildings, driveways, parking areas, walks, patios, pools and other impervious surfaces, and decks and other structures
All utilities and easements
Location, size, maintenance access, type of proposed structural stormwater controls and facilities with elevations and inverts
Location, size, maintenance access, type of proposed non-structural stormwater controls and facilities with elevations and inverts
Location, size, type of proposed stormwater infrastructure, inlets, manholes, infiltration and detentions systems, control structures with elevations and inverts
Location, size, ownership of stormwater conveyance systems (swales, pipes, etc.) with elevations and inverts
Identify roof leaders, curtain drains and foundation drains with elevations and inverts
Proposed water quality treatment systems, size and model type
Final stabilization measures which may include slope stabilization

C. Erosion and Sedimentation Control Plan

Phasing and schedule
Construction access and staging and stock pile areas
Operation and maintenance of erosion and sedimentation controls
Tree protection
Downstream protection such as location of silt fencing
Limit of disturbance
Construction fencing

D. <u>Construction Details</u>

Standard City of Stamford details
Infiltration system details
Control structure details
Water quality treatment details
Infiltration testing results

Checklist for Certificate of Occupancy

Final Improvement Location Survey
Stormwater Management Certification Form
Final DCIA Tracking Worksheet
Standard City of Stamford Drainage Maintenance Agreement (Agreement Covenant)

Other Certifications at the discretion of the Engineering Bureau and/or EPB

Wall Certification
Landscape Certification
Landscape Maintenance Agreement
Waiver Covering Storm Sewer Connection
Waiver Covering Granite Block, Depressed Curb, and Driveway Aprons
Flood Certification

Appendix H

Sanitary Sewer Capacity Calculations

Redniss & Mead

ENGINEERS · SURVEYORS · PLANNERS · WWW.REDNISSMEAD.COM 22 FIRST STREET · STAMFORD, CONNECTICUT 06905 · (203) 327-0500

Mannings Equation - Circular Pipe						
Project:	40 Signal Road		Project #:	2008		
Location:	Stamford CT		By:	SPC	Date:	12/21/2022
Description:	Manning's Equation, Ci	rcular Pipe	Checked:	ТМ	Date:	12/21/2022
	Calculate th	12" Sanita e maximum flo	ary Main ow capacity	using Man	ning's equ	ation.
	Pipe material	Reinforced Concre	te Pipe (RCP)		•	
	Manning's n	0.013				
	Pipe diameter, D	1 ft				
	Area, A	0.79 ft ²		$A=\frac{\pi}{4}D^2$		
	Wetted perimeter, P	3.14 ft		$P = \pi D$		
	Hydraulic radius, R _h	0.25 ft		$R_h = \frac{A}{P}$		
	Slope, S	0.00265 ft/f	Ìt			
	Flow, Q	1.83 cfs		$Q = \frac{1.486}{n}$	$AR_{h}^{\frac{2}{3}}S^{\frac{1}{2}}$	