

William J. Hennessey

Partner

Phone: 203.425.4200 Fax: 203.325.8608

WHennessey@carmodylaw.com

1055 Washington Blvd. 4th Floor Stamford, CT 06901

October 20, 2023

VIA HAND & ELECTRONIC DELIVERY

Ms. Vineeta Mathur Principal Planner, Land Use Bureau City of Stamford 888 Washington Boulevard Stamford, CT 06901 VMathur@StamfordCT.gov

Re: Site Plan and Special Permit Application 375 Fairfield Avenue, Stamford, CT (Parcel ID 001-3193) 375 Fairfield Avenue Associates

Dear Ms. Mathur:

Our firm represents 375 Fairfield Avenue Associates (the "Applicant"), the owner of 375 Fairfield Avenue, Stamford, CT (the "Property"). The Property is located in the General Industrial (M-G) zone and Master Plan Category 13 (Industrial – General). It is 9.38± acres and improved with eight (8) buildings with a total of 176,714± sf of floor area.

The Applicant proposes to construct two (2) new warehouse/flex industrial/commercial buildings on the Property. Proposed Building A will consist of three (3) stories and contain approximately 54,156± square feet of warehouse/flex industrial/commercial space. Approximately 1,044± sf of additional floor area will be built to accommodate a fast casual food service tenant that is complementary to the anticipated use. Proposed Building B will consist of a one (1) story, including an optional mezzanine, and contain approximately 39,980± square feet of warehouse/flex industrial/commercial space. To facilitate this proposal, the Applicants request from the Zoning Board (1) site plan approval and (2) special permit approval of a large scale development.

In connection with the application, enclosed please find:

- Letter of Authority from the Applicant;
- Application fees in the amount of \$3,740, representing the application filing and public hearing fees;
- Twenty-one (21) copies of the following application forms and associated schedules:
 - o Application for Site Plan Approval;
 - o Application for Special Permit Approval;
 - Schedule A List of Plans;

- Schedule B Project Narrative;
- Schedule C Statement of Findings;
- Schedule D Property Description;
- Schedule E Zoning Data Chart; and
- Schedule F Existing Zoning Map and Aerial Photo of Property;
- Eight (8) full-size and thirteen (13) reduced-size copies of the following plans:
 - o Architectural Plans prepared by Jason Little Architects, PLLC, dated October 4, 2023, with the plan titles listed on Schedule A;
 - Civil Plans prepared by D'Andrea Surveying & Engineering, P.C., dated October
 4, 2023, with the plan titles listed on Schedule A;
 - Zoning Location Survey prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, entitled "Zoning Location Survey;"
 - o Average Grade Worksheet prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, with the plan titles listed on Schedule A; and
 - Landscape Plan prepared by Environmental Land Solutions, LLC, dated October 9,
 2023, with the plan titles listed on Schedule A;
- Three (3) copies of the Drainage Study prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, entitled "Drainage Summary Report;"
- Nine (9) copies of the Traffic Impact Study prepared by SLR International Corporation, dated October 20, 2023, entitled "Traffic Impact Study;" and
- Twenty-one (21) copies of the first submission of the Stamford Sustainability Scorecard.

Please let me know if you have any questions or require additional materials. As always, thank you for your time and attention regarding this matter.

Sincerely,

William J. Hennessey, Jr.

Enclosures.

cc: R. Blessing
375 Fairfield Avenue Associates
Jason Little Architects, PLLC
D'Andrea Surveying & Engineering, P.C.
Environmental Land Solutions, LLC
SLR International Corporation

¹A Parking and Traffic Demand Management Plan prepared by SLR International Corporation will be provided under separate cover.

September 28, 2023

Vineeta Mathur Principal Planner, Land Use Bureau City of Stamford 888 Washington Blvd. Stamford, CT 06901

Re:

375 Fairfield Avenue Associates

Land Use Applications

375 Fairfield Avenue (the "Property")

Dear Ms. Mathur:

375 Fairfield Avenue Associates is the owner of the above-captioned Property. Please consider this letter as written confirmation that the undersigned has authorized the attorneys of Carmody Torrance Sandak & Hennessey, LLP, with offices located at 1055 Washington Boulevard, Stamford, Connecticut 06901, to file the enclosed land use applications with the City of Stamford on its behalf in connection with the Property. Thank you for your acknowledgement of said authority.

Sincerely,

375 Fairfield Avenue Associates

Jeff Goldblum, Managing member

By:

Duly Authorized

APPLICATION FOR APPROVAL OF SITE & ARCHITECTURAL PLANS AND / OR **REQUESTED USES**

Complete, notorize, and forward thirteen (13) hard copies and one (1) electronic copy in PDF format to Clerk of the Zoning Board with a \$1,000.00 Public Hearing Fee and the required application filling fee (see Fee Schedule below), payable to the City of Stamford.

NOTE: Cost of required Public Hearing advertisements are payable by the Applicant and performance of required mailing to surrounding property owners is the sole responsibility of the applicant. **LAND RECORDS RECORDING FEE**: \$60.00 for First page - \$5.00 for each additional page)

Fee Schedule -WITHOUT GDP

ree Schedule -WITHOUT GDP	
Site Plans 20,000 sq. ft. or less of building area application fee –without GDP	\$460.00
Site Plans more than 20,000 sq. ft. of building area-application Fee –without GDP	\$460.00 + \$30 per 1,000 sq. ft. or portion thereof in excess of 20,000 sq. ft.

Fee Schedule -WITH GDP

Site Plans 20,000 sq. ft. or less of building area application fee –with GDP.	\$260.00
Site Plans more than 20,000 sq. ft. of building area-application Fee –with GDP.	\$260.00 + \$10 per 1,000 sq. ft. or portion thereof in excess of 20,000 sq. ft.

APPLICANT NAME (S): 375 Fairfield Avenue Associates				
c/o Agent: William J. Hennessey, Carmody Torrance Sandak & Hennessey LLP, 1055 Washington Blvd., 4th Fl., Stamford, CT 06901				
APPLICANT ADDRESS:				
c/o Agent: William J. Hennessey, Carmody Torrance Sandak & Hennessey LLP, (203) 425-4200				
IS APPLICANT AN OWNER OF PROPERTY IN THE CITY OF STAMFORD?				
LOCATION OF PROPERTY IN STAMFORD OWNED BY APPLICANT (S):				
ADDRESS OF SUBJECT PROPERTY: 375 Fairfield Avenue				
M-G				
PRESENT ZONING DISTRICT: See Schedule A				
TITLE OF SITE PLANS & ARCHITECTURAL PLANS:				
Warehouse/Industrial and Restaurant, Carry-Out, consistent with the uses allowed in the M-G Zone				
REQUESTED USE:				
LOCATION: (Give boundaries of land affected, distance from nearest intersecting streets, lot depths and Town Clerk's Block Number)				
See Schedule D				
occ osiloddio 5				
NAME AND ADDRESS OF OWNERS OF ALL PROPERTY INVOLVED IN REQUEST: NAME & ADDRESS LOCATION				
375 Fairfield Avenue Associates 375 Fairfield Avenue				
PO BOX 110422				
STAMFORD, CT 06911-0422				
DOES ANY PORTION OF THE PREMISES AFFECTED BY THIS APPLICATION LIE WITHIN 500 FEET OF THE BORDER LINE				
WITH GREENWICH, DARIEN OR NEW CANAAN? No (If yes, notification must be sent to Town Clerk of neighboring community by registered mail within 7 days of receipt of application – PA 87-307).				
DOES THE PROJECT RESULT IN THE CREATION OF 10 OR MORE UNITS OR 10,000 SF OR MORE IN FLOOR AREA OR DISTURBANCE OF 20,000 SF OR MORE IN LAND AREA, THROUGH NEW DEVELOPMENT, RECONSTRUCTION,				
ENLARGEMENT OR SUBSTANTIAL ALTERATIONS? Yes (If yes, then complete the Stamford Sustainability				
Scorecard per Section 15.F).				

City of Stamford Zoning Board · Land Use Bureau Government Center · 888 Washington Boulevard · Stamford, CT 06904-2152 Phone: 203.977.4719 · Fax: 203.977.4100

NOTE: The application cannot be scheduled for public hearing until 35 days have elapsed from the date of referral to the Stamford Planning Board. If applicant wishes to withdraw the application, this must be done in writing, and be received by the Zoning Board at least three (3) working days prior to public hearing in order to provide sufficient time to publicize the withdrawal. Applications withdrawn less than three (3) days prior to a schedule hearing date will not be rescheduled within 90 days.
STATE OF CONNECTICUT SS STAMFORD OCTOBER 20 20 23 COUNTY OF FAIRFIELD Personally appeared William T. Hennessey, Tr., signer of the foregoing application, who made oath to the truth of the contents thereof, before me. Daniel Chapple Notary Public - Commissioner of the Superior Court
FOR OFFICE USE ONLY APPL. #: Received in the office of the Zoning Board: Date:
Ву:

Revised 9/02/20

\$460.00

\$460.00 + \$30 per 1,000 sq. ft. or

Fee Schedule

Special Permit 20,000 sq. ft. or less

Government Center · 888 Washington Boulevard · Stamford, CT 06904-2152 Phone: 203.977.4719 · Fax: 203.977.4100

APPLICATION FOR SPECIAL PERMIT

Complete, notorize, and forward thirteen (13) hard copies and (1) electronic copy in PDF format to Clerk of the Zoning Board with a \$1,000.00 Public Hearing Fee and the required application filling fee (see Fee Schedule below), payable to the City of Stamford.

NOTE: Cost of required advertisements are payable by the Applicant and performance of required mailing to surrounding property owners is the sole responsibility of the applicant. **LAND RECORDS RECORDING FEE**: \$60.00 for First page - \$5.00 for each additional page)

		portion thereof in excess of 20,000 sq. ft.
A DDL IC	ANT NAME (S):	
	c/o Agent: William J. Hennessey, Carmody Torrance Sandak & Hennessey LLP, 1055 Washington	Blvd., 4th Fl., Stamford, CT 06901
APPLIC	ANT ADDRESS:	VIIP (203) 425-4200
APPLIC	ANT PHONE #:	y LLI , (200) 420 4200
IS APPL	ICANT AN OWNER OF PROPERTY IN THE CITY OF STAMFORD?	
LOCATI	ON OF PROPERTY IN STAMFORD OWNED BY APPLICANT (S):	
ADDRES	SS OF SUBJECT PROPERTY: 375 Fairfield Avenue	
PRESEN	IT ZONING DISTRICT: M-G	
TITLE O	F SITE PLANS & ARCHITECTURAL PLANS: See Schedule A	
	STED SPECIAL PERMIT: (Attach written statement describing request) val of a Large Scale Development - See Schedules B and C	
LOCATION	ON: (Give boundaries of land affected, distance from nearest intersecting streets, lot depths and To	wn Clerk's Block Number)
See S	schedule D	
NAME A	ND ADDRESS OF OWNERS OF ALL PROPERTY INVOLVED IN REQUEST: NAME & ADDRESS LOCATION	
	airfield Avenue Associates 375 Fairfield Avenue OX 110422	
STAM	IFORD, CT 06911-0422	
WITH G	NY PORTION OF THE PREMISES AFFECTED BY THIS APPLICATION LIE WITHIN 500 FEET OF REENWICH, DARIEN OR NEW CANAAN? No (If yes, notification must be sent to ity by registered mail within 7 days of receipt of application – PA 87-307).	
DISTURI ENLARG	HE PROJECT RESULT IN THE CREATION OF 10 OR MORE UNITS OR 10,000 SF OR MORE IN BANCE OF 20,000 SF OR MORE IN LAND AREA, THROUGH NEW DEVELOPMENT, RECONSTI JEMENT OR SUBSTANTIAL ALTERATIONS? Yes (If yes, then complete the Stamb JEMENT OR SUBSTANTIAL ALTERATIONS? Yes (If yes, then complete the Stamb JEMENT OR SUBSTANTIAL ALTERATIONS?	RUCTION,

DATED AT STAMFORD, CONNECTICUT, THIS 20 SIGNED: NOTE: Application cannot be scheduled for Public Hearing until 35 days have elapsed from the date of referral to the Stamford Planning Board. If applicant wishes to withdraw application, please notify the Zoning Board at least three (3) days prior to Public Hearing so that the Board may have sufficient time to publicize the withdrawal. STATE OF CONNECTICUT ss STAMFORD COUNTY OF FAIRFIELD William signer of the foregoing application, who made oath to Personally appeared _ the truth of the contents thereof, before me. Notary Public (Commissioner of the Superior Court) FOR OFFICE USE ONLY Received in the office of the Zoning Board: Date: ____ APPL. #: __

Revised 09/02/2020

Schedule A List of Plans

- Architectural Plans prepared by Jason Little Architects, PLLC, dated October 4, 2023, entitled:
 - o "A-1: Cover Sheet;"
 - o "A-2: Sketch Renderings Building A;"
 - o "A-3: Sketch Renderings Building B;"
 - o "A-4: Material Selections;"
 - o "A-5: Bldg. A Exterior Elevations;"
 - o "A-6: Bldg. B Exterior Elevations;"
 - o "A-7: Building Sections;"
 - o "A-8: Bldg. A Cellar Plan;"
 - o "A-9: Bldg. A 1st Floor Plan;"
 - \circ "A-10: Bldg. A 2nd Floor Plan;"
 - \circ "A-11: Bldg. A 3rd Floor Plan;"
 - o "A-12: Bldg. A Roof Plan;"
 - "A-13: Bldg. B 1st Floor & Mezzanine Plan;" and
 - o "A-14: Bldg. B Roof Plan;"
- Civil Plans prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, entitled:
 - o "Topographic Survey 'Existing Conditions';"
 - o "C-1.1: Building 'A' Site Grading Plan;"
 - o "C-1.2: Building 'B' Site Grading Plan;"
 - o "C-2.1: Building 'A' Drainage and Utility Plan;"
 - o "C-2.2: Building 'B' Drainage and Utility Plan;"
 - o "C-3.1: Building 'A' Sedimentation and Erosion Control Plan;"
 - o "C-3.2: Building 'B' Sedimentation and Erosion Control Plan;"
 - o "C-4.1: Notes and Details;"
 - o "C-4.2: Details;" and
 - o "C-5.0: Low-Impact Development Plan;"
- Zoning Location Survey prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, entitled "Zoning Location Survey;"
- Average Grade Worksheet prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, entitled:
 - o "Building 'A' Proposed Average Grade Worksheet;" and
 - o "Building 'B' Proposed Average Grade Worksheet;"
- Landscape Plan prepared by Environmental Land Solutions, LLC, dated October 9, 2023, entitled:
 - o "LP.1 Landscape Plan;" and
 - o "LP.2 Landscape Plan;"
- Drainage Study prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, entitled "Drainage Summary Report;" and
- Traffic Impact Study prepared by SLR International Corporation, dated October 20, 2023, entitled "Traffic Impact Study;" and
- First submission of the Stamford Sustainability Scorecard.

Schedule B Project Narrative

375 Fairfield Avenue Associates (the "Applicant") requests Site Plan and Special Permit approvals to facilitate the development of two (2) new buildings at 375 Fairfield Avenue (the "Property").

I. The Applicant

The Applicant has owned the Property since 1985 and is affiliated with Waterside Property Group, a Stamford-based, family-owned real estate investment, development, and management firm. Waterside Property Group has served the Stamford community for more than 50 years and owns and manages more than 850,000 sf of property in southern Connecticut. As detailed below, for the past 38 years, the Applicant has maintained the existing structures on the Property and attracted a unique mix of industrial and mercantile tenants.

II. The Property & Existing Uses

The Property is 9.38± acres and located in the General Industrial (M-G) zone and Master Plan Category 13 (Industrial – General). It is generally bounded by the Metro-North Railroad to the west and north, Fairfield Avenue to the east, and other industrial properties to the south. The Property is improved with eight (8) buildings with a total of 176,714± sf of Floor Area. The buildings were constructed in the 1930s and have been used as warehouse/flex industrial/commercial space for a variety of tenants. Currently, the Property is home to companies in the fields of printing, truck rentals, roofing, flooring, HVAC supply, medical equipment storage, delivery, restaurant storage, and home improvement. Located in the Stamford Waterside Design District, the Property is also home to a variety of design tenants including kitchen cabinet suppliers as well as wholesale companies that sell items including carpet, fabrics, wall coverings, and furniture to builders, architects, and designers. Notably, these items are sold predominantly to-the-trade.

The eastern portion of the Property consists of a mixture of compacted gravel and paved parking areas, which is rented out to automobile dealerships to park surplus car inventory and seasonally for winter boat storage. A portion of land in the center of the Property consists of a large concrete slab surrounded by paved driveway and parking areas. A 70,000± square foot industrial warehouse once sat on this slab, which housed companies such as Union Industries, Abbot Coin, and various smaller industrial users. In the early 1990s, the building became functionally obsolete beyond repair and had to be demolished. Since then, the slab has been leased to landscapers, car dealerships, and container rental companies, and used for tractor trailer storage.

III. Description of Proposed Development

The Applicant proposes to build two (2) new warehouse/flex industrial/commercial buildings on the Property, which will be marketed toward similar industrial and design tenants. Proposed Building A will consist of three (3) stories and contain approximately 54,156± square feet of warehouse/flex industrial/commercial space. Approximately 1,044± sf of additional Floor

Area will be built to accommodate a fast casual food service tenant that is complementary to the other proposed uses. The roof will contain approximately 4,338± square feet of outdoor space that can support a terrace for use by tenants. If the roof terrace is constructed, it would be accompanied by a demountable fence to separate this space from the remainder of the roof. Proposed Building B will consist of a one (1) story, including a potential mezzanine, and contain approximately 39,980± square feet of warehouse/flex industrial/commercial space.

Associated landscaping and site improvements are also proposed. An additional 52 parking spaces will be added to the Property to serve Building A and an additional 48 parking spaces will be added to serve Building B.² The area around the new buildings and parking areas will be landscaped with a variety of plants and shade trees. Sidewalk improvements are proposed along the Property's Fairfield Avenue frontage. None of the existing buildings will be demolished in connection with the proposed development.

There is a strong demand for warehouse and flex industrial space in Stamford, as well as to-the-trade wholesale spaces for builders, architects, and designers. Waterside Property Group has received numerous calls from prospective tenants looking for modern industrial space ranging from 3,000-20,000 sf. Unfortunately, the Applicant cannot accommodate these requests, as the existing buildings on the Property are almost fully occupied or not suitable for a variety of reasons. Those who frequent the businesses on the Property have noted that they need to travel out of town to purchase certain products for their clients and would like to see a bigger mix of these products here in Stamford.

IV. Requested Approvals

To facilitate this proposal, the Applicant requests the following approvals:

- (1) Final Site Plan Approval pursuant to §§ 4.B.8.b. and 19.D. of the Zoning Regulations to develop the two (2) proposed buildings, parking lot, and associated site improvements on the Property.
- (2) Special Permit Approval of a Large Scale Development pursuant to § 19.E. of the Zoning Regulations to permit the construction of a non-residential structure having a Gross Floor Area of 20,000 sf or more.

{\$7520287} Page 3 of 14

¹If constructed, the mezzanine will be approximately 2,960± square feet and contain administrative offices for the space below. The square footage of the potential mezzanine is included in all FAR and parking calculations.

²Section 12.B.4. of the regulations provides in relevant part: "Parking Lots in existence at the time of the adoption of these standards shall not be required to be in compliance with the standards of Sections 12.B.2. and 12.B.3. unless they are comprehensively redesigned. 'Comprehensively redesigned' for the purposes of this Section shall mean structural changes that affect at least 50% of the Parking Lot area, as determined by Land Use Bureau staff[.]" The total area of land disturbance for the proposed development will be approximately 41.5 percent. Although the Applicant is not required to make improvements to the existing Parking Lots on the Property, it has designed the parking areas around proposed Building A and Building B to comply with the standards of Section 12.B.3.

V. Conformity of Site Plan with Stamford Master Plan and M-G Zone

The proposed development is consistent with the goals and policies of the Master Plan and the purpose and intent of the M-G regulations. The Property is in Master Plan Category 13 (Industrial – General), which is intended to "provide for and protect existing industrial development and preserve opportunities for new industrial uses[.]" The proposed development would further this goal by adding more industrial space on a site containing buildings that have been used for industrial purposes for almost a century. The proposed uses are fully permitted in the M-G zone, which accommodates a wide variety of commercial, industrial, and institutional uses. Moreover, the scale and design of the buildings are in compliance with the zoning regulations and in harmony with the surrounding neighborhood, which contains other industrial properties.

VI. Conclusion

The proposed development will add warehouse, flex industrial, commercial, and fast casual restaurant space to an existing industrial site in an area that is well-suited for such uses. The proposed buildings will be constructed with a mix of high-quality materials and accompanied by attractive landscaping and parking improvements. If approved, the proposed development will serve as a gateway to Stamford's Waterside Design District and attract a variety of new design tenants to the area.

{S7520287}

³STAMFORD MASTER PLAN at 196 (Dec. 16, 2014).

Schedule C Statement of Findings

The Applicant submits the proposal is consistent with the Site Plan standards (§ 19.D.4.) and Special Permit standards (§ 19.C.2.) of the Zoning Regulations as follows:

a. Site Plan Standards

In reviewing site plans the Zoning Board shall take into consideration the purpose of these Regulations, including the purpose of the applicable zoning district and the goals and policies of the Stamford Master Plan, the public health, safety and general welfare and convenience of the general public and the maintenance of property values. In its review the Board may modify a site plan or condition an approval to the extent necessary to conform the site plan to the following standards and objectives:

- (1) Safe, adequate and convenient vehicular traffic circulation, operation, parking and loading, and pedestrian circulation, both within and without the site.
 - (a) The number, locations and dimensions of all vehicular and pedestrian access drives and walkways, parking spaces, drop-off and loading areas, and provisions for handicapped access shall conform to the standards of Section 12 of these Regulations, to the adopted design criteria and engineering practices of the Dept. of Traffic and Parking, and all other applicable standards. Such areas shall be constructed of suitable hard surface materials and maintained in good condition.

The number, locations, and dimensions of all vehicular and pedestrian access drives and walkways, parking spaces, drop-off and loading areas, and handicapped access conform to the standards of the M-G Zone and applicable provisions of Section 12 of the Zoning Regulations. The enclosed Zoning Location Survey and architectural plans provide parking details for the development. Additionally, as detailed on the enclosed plans and the zoning data chart, the Applicant will comply with the bicycle parking requirements in § 12.J. of the Zoning Regulations and electric vehicle parking requirements in § 12.L.

(b) The number of vehicle access drives shall be minimized and shall be located and designed to provide safe and convenient turning movements and safe sightline as determined in accordance with the Geometric Highway Design Standards of the Conn. Dept. of Transportation.

Vehicles will enter and exit the Property through driveways along Fairfield Avenue. There is one (1) existing driveway, which will be modified to improve access and vehicle circulation. Two (2) additional driveways are proposed. At all points where two-way flow of traffic is anticipated, the driveways are at least the required width of 24 feet. All access drives have been designed to provide safe and convenient access to the Property.

- (c) Area streets and traffic controls shall be determined to have adequate capacity to service the site without causing undue congestion or hazardous conditions.
 - The surrounding streets can adequately accommodate the traffic associated with the proposed use. For a more complete discussion of the traffic impact, please see the enclosed Traffic Impact Study prepared by SLR.
- (2) The protection of environmental quality, landscaping of open space and harmony with existing development. The Board shall take into consideration the following features and standards:
 - (a) The location, height, design and materials of walls, fences, hedges and plantings shall be appropriate to the vicinity and shall suitably screen parking, loading, garbage collection facilities, outside storage areas, accessway drives, utility installations and other such features; such landscaping shall be appropriate to the general character of the vicinity and consider the proximity and nature of abutting uses and the level of use of adjoining public streets and walkways.
 - The proposed location, height, design and materials of walls, fences, hedges, and plantings are appropriate for the Property and the surrounding area. They also sufficiently screen parking, loading spaces, garbage collection facilities, accessway drives, and utility installations. The enclosed Landscape Plan prepared by Environmental Land Solutions, LLC depicts the proposed landscaping on the Property.
 - (b) All open space areas, exclusive of undisturbed natural areas, shall be suitably landscaped to the satisfaction of the Board. Site landscaping shall be performed at a minimum dollar value equivalent to one shade tree of 2.5 inch caliper for every two hundred (200) square feet of landscaped area. In multi-family developments, open space shall be designed to provide functional outdoor living and play areas meeting the needs of intended residents.
 - Currently, there is no discernable landscaping on the Property. The Applicant proposes installing and maintaining appropriate onsite landscaping, as detailed on the enclosed Landscape Plan prepared by Environmental Law Solutions, LLC.
 - (c) Soil erosion, sediment and the release of excessive dust shall be controlled through implementation of suitable short term and long term controls in accordance with the standards and procedures of Section 15-B.
 - Enclosed is a comprehensive Sedimentation and Erosion Control Plan, prepared by D'Andrea Surveying & Engineering, P.C., which ensures the standards and procedures of § 15.B. of the Zoning Regulations are satisfied.
 - (d) Site development shall seek to preserve existing specimen trees, historic structures and other significant natural features of the site. Accordingly, the premature demolition

and site clearance of prospective development sites is specifically discouraged and may be taken into consideration in subsequent site plan reviews.

Due to its industrial use, the Property currently contains minimal landscaping and natural features. Instead, the majority of the Property that does not contain buildings consists of either paved or compacted gravel driveway with little vegetated area and few trees. The area designated for the development of proposed Building "A" currently consists of a mixture of compacted gravel and paved parking areas. The area designated for the development of proposed Building "B" currently consists of a large concrete slab surrounded by paved driveway and parking areas. As depicted on the enclosed Landscape Plan, no existing trees will be removed in connection with the proposed development, and a variety of plants and shade trees will be added to the Property. Additionally, street trees are proposed on the street frontage in front of Proposed building "A."

As stated above, the eight (8) existing buildings on the Property date back to the 1930s. These buildings will remain undisturbed. As depicted on the enclosed architectural plans, the new buildings have been designed to complement the existing buildings.

(e) Artificial lighting, and site generated noise, odors, particles and other disturbances shall be controlled to avoid interference with the use and enjoyment of neighboring properties. The location, height, design and arrangement of outside lighting shall be consistent with safety such as to avoid glare on any other lot and to avoid hazards to traffic on any street.

The site is not proximate to any residential uses. All artificial lighting and site generated noise and other disturbances shall be controlled and will not interfere with the use and enjoyment of the neighboring properties. The location, height, design, and arrangement of outside lighting shall be consistent with safety so as to avoid glare on any other lot and to avoid traffic hazards on Fairfield Avenue.

(f) Available public utilities shall be adequate in capacity to safely service the requirements of the site. Surface water drainage facilities shall be adequate to safely drain the site while minimizing the risk of downstream flooding and erosion. Where infrastructure capacity is judged not to be adequate the Board may accept a binding agreement to perform suitable improvements.

The enclosed Drainage Summary Report prepared by D'Andrea Surveying & Engineering, P.C. indicates that the proposed improvements to the property will provide water quality treatment measures that will both mitigate stormwater runoff from the site and reduce runoff volumes and peak flow rates as compared to existing conditions. Further, the improvements will not adversely impact adjacent or downstream properties or City-owned drainage facilities.

- (g) Adequate provision shall be made for emergency vehicle access, fire lanes, and safe fire flows, upon the recommendation of the Fire Marshall and the public water utility.
 - Emergency and first responders will be able to access the Property safely and conveniently.
- (h) The arrangement, location, apparent bulk, architectural features, materials, texture and color of proposed buildings and structures shall establish an architectural character and overall site design compatible with the scale and general character of the vicinity.
 - The proposed structures will be among the nicest in the general area and will enhance the architectural character of the surrounding area.
- (i) Building setbacks and the configuration of open space shall be appropriate to the existing structures on adjoining properties and established patterns of use of side and rear yard areas, and to the existing physical conditions of the site.
 - The proposed development and site landscaping comply with the standards of the M-G Zone. As noted on the enclosed Zoning Data Chart, there is an existing legal nonconformity with regard to Building 2, which was constructed in 1930 and is located within the 10-foot front yard setback. The two (2) new proposed structures will comply with the 10-foot front yard setback requirement for the M-G Zone.
- (j) No use shall be permitted that will cause or result in:
 -dissemination of dust, smoke, observable gas or fumes, odor, noise or vibration beyond the immediate site of the building in which such use is conducted, or
 -unusual hazard of fire or explosion or other physical hazard to any adjacent buildings, or
 - -harmful discharge of liquid materials, or
 - -unusual traffic hazard or congestion due to the type of vehicles required in the use or due to the manner in which traffic enters or leaves the site of the use.

No nuisance or hazardous conditions are anticipated.

(k) All buildings and grounds and other structures shall be maintained in good repair and in safe, clean and sanitary condition. All landscaping required pursuant to an approved site plan shall be installed to the satisfaction of the Director of Parks and Recreation and shall thereafter be maintained in accordance with an agreement to be made part of the application of record, which agreement shall be enforced by the Zoning Enforcement Officer, upon advice of the Director.

The Applicants are amenable to a condition of approval requiring the execution of a Landscape Maintenance Agreement and a Drainage Maintenance Agreement prior to the issuance of a Certificate of Occupancy.

b. Special Permit Standards

Special Permits shall be granted by the reviewing board only upon a finding that the proposed use or Structure or the proposed extension or alteration of an existing use or Structure is in accord with the public convenience and welfare after taking into account, where appropriate:

- (1) the location and nature of the proposed site including its size and configuration, the proposed size, scale and arrangement of Structures, drives and Parking Areas and the proximity of existing dwellings and other Structures.
 - The proposed development is appropriate for the Property. The proposed size, scale, and arrangement of the buildings are consistent with the existing buildings on the Property and with the surrounding area.
- (2) the nature and intensity of the proposed use in relation to its site and the surrounding area. Operations in connection with Special Permit uses shall not be injurious to the neighborhood, shall be in harmony with the general purpose and intent of these Regulations, and shall not be more objectionable to nearby properties by reason of noise, fumes, vibration, artificial lighting or other potential disturbances to the health, safety or peaceful enjoyment of property than the public necessity demands.
 - The proposed use of the property will not be injurious to the surrounding neighborhood. The proposed uses as warehouse, flex industrial, commercial, and restaurant space are less intense than other uses permitted in the M-G zone. The activities on the Property will not cause disturbances to nearby properties in a manner that is objectionable. The purpose of the M-G is to separate the most intense industrial uses from susceptible uses to minimize potential negative impact, so the proposed use will be adequately shielded from less intense uses.
- (3) the resulting traffic patterns, the adequacy of existing Streets to accommodate the traffic associated with the proposed use, the adequacy of proposed off-street parking and loading, and the extent to which proposed driveways may cause a safety hazard, or traffic nuisance.
 - As detailed in the attached Traffic Impact Study from SLR, the proposal will not result in adverse traffic conditions and no traffic mitigation is necessary. The increase in traffic caused by the proposed development can be accommodated by the surrounding roadway system. There will be an adequate amount of off-street parking and loading. The proposed driveways will not cause a safety hazard or traffic nuisance.
- (4) the nature of the surrounding area and the extent to which the proposed use or feature might impair its present and future Development.
 - The proposed development will not impair the present and future development of the surrounding area, which has many other industrial sites.

(5) the Master Plan of the City of Stamford and all statements of the purpose and intent of these regulations.

The proposed development is consistent with the goals and policies of the Master Plan and the purpose and intent of these regulations. The Property is in Master Plan Category 13 (Industrial – General). This category is intended to "provide for and protect existing industrial development and preserve opportunities for new industrial uses, including the manufacture and assembly of products, wholesale storage and distribution, research and development and such other uses that are ancillary or subordinate to industrial activities." The Applicant proposes to construct industrial buildings and a small restaurant space, for which there is market demand and need within the City of Stamford. Moreover, the Property contains buildings that have been used for industrial purposes for almost a century. Thus, the addition of new industrial space to the Property would further the goals of the Master Plan.

The M-G zone is designed to separate industrial and institutional uses from residential and other incompatible uses to minimize potential negative impacts.⁵ Thus, by virtue of the Property's location in this zone, the proposed development will be shielded from less intense uses in accordance with the intent of the zoning regulations. Furthermore, the proposed uses are fully permitted in the M-G zone and the scale and design of the building is in compliance with the zoning regulations and is in harmony with the surrounding neighborhood, which contains other industrial and institutional properties.

⁴STAMFORD MASTER PLAN at 196 (Dec. 16, 2014).

⁵See ZONING REGULATIONS § 4.B.8.a. and MASTER PLAN at 45.

Schedule D Property Description

ALL THAT CERTAIN plot, piece or parcel of land with the buildings and improvements erected thereon situated in the City of Stamford, County of Fairfield and State of Connecticut and shown on a map entitled, "Map Showing Property Surveyed for Norman F. Levy and Marvin L. Goidell Stamford, Conn.," dated March 3, 1977, by Parsons, Bromfield and Redniss, Engineers – Surveyors, Stamford, Connecticut; which map was filed as Map #9924 in the Stamford Land Records, and bounded and described as follows:

BEGINNING at a point formed by the intersections of the division line between the premises herein described and land now or formerly of Penn Central Railroad with the Westerly street line of Fairfield Avenue; running thence along the Westerly street line of Fairfield Avenue South 3° 38' 18" West 742.92 feet to a point at land now or formerly of the City of Stamford; thence along land now or formerly of the City of Stamford on a curve to the right with a radius of 1713.50 feet a distance of 428.67 feet to a point; thence south 45° 55' 10" West 128.83 feet to a point; thence South 50° 19' 10" West 110.00 feet to a point; thence along a curve to the right with a radius of 1728.00 feet a distance of 348.94 feet to a point at land now or formerly of Pitney Bowes Inc.; thence along land now or formerly of Pitney Bowes, Inc., North 25° 38' 30" West 93.43 feet to a point; thence North 43° 14' West 132.97 feet to a point at land now or formerly of Penn Central Railroad; thence along land now or formerly of Penn Central Railroad on a curve to the left with a radius of 3919.83 feet a distance of 1231.162 feet to a point; thence North 30° 29' East 311.04 feet to the point and place of BEGINNING.

TOGETHER WITH all right, title and interest, if any, of the Grantor in and to any strips or gores of land adjoining the above described premises;

TOGETHER WITH the appurtenances thereto.

TOGETHER WITH all right, title, and interest, if any, of Denis A. Healy and Esther K. Mason, as fully described in deed dated July 27, 1965 and recorded September 24, 1965 in Volume 1059, Page 229 at Page 231 of the Stamford Land Records. (the Lease Agreements referenced in said deed have not been recorded in said Land Records)

TOGETHER WITH the Easement from Murray Goldblum (a/k/a Murray A. Goldblum), Alex Goldblum (a/k/a Alex L. Goldblum and Alexander Goldblum), and Irving S. Goldblum to 375 Fairfield Avenue Associates, dated September 15, 1997 and recorded October 6, 1997 in Volume 4844, Page 346, and as shown on Map No. 10107, all of the Stamford Land Records.

TOGETHER WITH the Lease Agreement between State of Connecticut Department of Transportation and 375 Fairfield Avenue Associates, dated June 11, 2001 and recorded July 3, 2001 in Volume 5840, Page 149 of the Stamford Land Records.

TOGETHER WITH the benefits of the Settlement Agreement concerning property located at 23 & 50 Barry Place, dated July 17, 2012 and recorded September 6, 2012 in Volume 10525, Page 156 of the Stamford Land Records.

END OF PROPERTY DESCRIPTION

Schedule E M-G Zoning Data Chart 375 Fairfield Avenue, Stamford, CT

	Standard/Required	Standard/Required Existing		Notes	
Min. Lot Area	4,000 sf	408,665 sf	408,665 sf	Complies	
Min. Lot Frontage	40'	742.92'	742.92'	Complies	
FAR	1.0	0.43	0.67	Complies	
Building Height	4 stories / 50'	2 stories / <50'	3 stories / 48'-3.25"	Complies	
Building Coverage (Interior Lot)	80%	24.7%	38.3%	Complies	
Min. Front Yard (to Street Line)	10'	6.3' (Building 2)	6.3' (Building 2)	Existing nonconformity, proposed buildings comply with 10' setback requirement	
Min. Side Yard	None required, but if provided, must be at least 4'	0' (Building 3)	0' (Building 3)	Complies	
Min. Rear Yard	15'	15.2'	15.2'	Complies	
Vehicle Parking ⁶	Total Required: 69 additional spaces (Warehouse: 1 / 2,000 sf GFA, Restaurant: 1 / 50 sf GFA) ⁷	Complies	100 additional spaces	Complies	
EV Charging Spaces	10 spaces ⁸ (one of which must be ADA)	N/A	10 spaces (one of which is ADA)	Complies	
Bicycle Parking	<i>Class A:</i> 19 <i>Class B:</i> 38	N/A	Class A: 20 Class B: 46	Complies	
Loading Spaces	3 additional spaces (Wholesale, Manufacturing and Storage: 2 for 40,000- 80,000 sf GFA plus 1 for each additional 80,000 sf GFA)	N/A	3 additional spaces	Complies	

Page 12 of 14

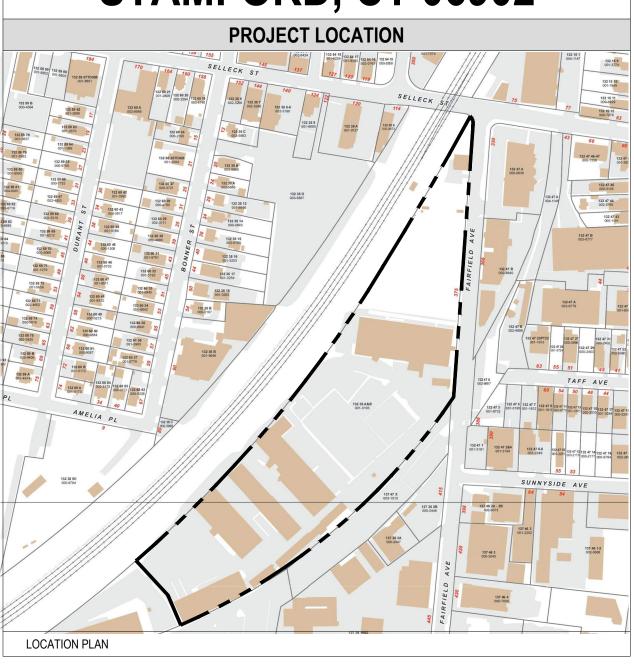
⁶The parking figures relate only to the proposed Building A and Building B.

⁷For conservative purposes, the Applicant has categorized the 1,044± sf of space that it is constructing to accommodate a fast casual restaurant as "restaurant" space.

⁸This total was calculated based on the total number of parking spaces provided (100), as opposed to the number of parking spaces required (69).

Schedule F
Existing Zoning Map and Aerial Photo of Property

SITE PLAN APPLICATION



BUILDING A

BUILDING B

375 FAIRFIELD AVE STAMFORD, CT 06902

SCOPE OF WORK

CONSTRUCTION OF TWO NEW WAREHOUSE BUILDINGS ON TWO UNDEVELOPED AREAS OF THE PROJECT SITE.

LIST OF DRAWINGS					
		10/04/2023 SITE PLAN APPLICATION			
A-1	COVER SHEET	•			
A-2	BLDG A - SKETCH RENDERINGS				
A-3	BLDG B - SKETCH RENDERINGS				
A-4	MATERIAL SELECTIONS				
A-5	BLDG A - EXTERIOR ELEVATIONS				
A-6	BLDG B - EXTERIOR ELEVATIONS				
A-7	BUILDING SECTIONS				
A-8	BLDG A - CELLAR PLAN				
A-9	BLDG A - 1ST FLOOR PLAN				
A-10	BLDG A - 2ND FLOOR PLAN				
A-11	BLDG A - 3RD FLOOR PLAN				
A-12	BLDG A - ROOF PLAN				
A-13	BLDG B - 1ST FLOOR & MEZZANINE PLAN				
A-14	BLDG B - ROOF PLAN				

FLOOR AREA ANALYSIS

OVERALL SITE - FLOOR AREA

OT AREA	408,665 SF
MAXIMUM FLOOR AREA RATIO	1.0
ALLOWABLE FLOOR AREA	408,665 SF

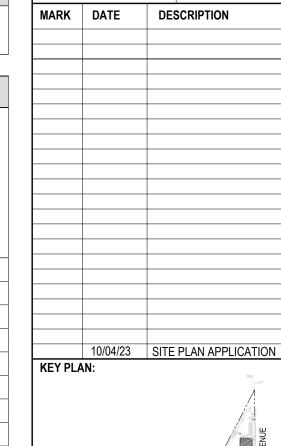
BLDG NAME	BLDG AREA
Α	55,200 SF
В	39,980 SF
1	56,018 SF
2	1,049 SF
3	41,401 SF
4	25,079 SF
5	5,797 SF
13	32,308 SF
14	13,121 SF
17	1,941 SF

TOTAL	271,894 SF
REMAINING FLOOR AREA	136,771 SF

BUILDING A			
Use:	Warehouse (54,156 SF)		
	Food Service (1,044 SF)		
No. Stories	3		
Height	48'-3 1/4" (to top of roof surface)		
Floor Area			
1st Floor	18,400 GSF		
2nd Floor	18,400 GSF		
3rd Floor	18,400 GSF		
тот	TOTAL 55,200 GSF		
FLOOR AREA IS CALCULATED AS DETERMINED UNDER THE DEFINITION OF 'FLOOR AREA RATIO (FAR)' CONTAINED IN SEC 3 B OF THE ZONING REGULATIONS.			

BUILDING B	
Use:	Warehouse
No. Stories	1
Height	36'-0" (to top of roof surfac

loor Area	
1st Floor	37,020 GSF
Mezzanine	2,960 GSF
TOTAL	39,980 GSF


SECTION 12 - MOBILITY ANALYSIS FOR PROPOSED BUILDINGS

	AREA	USE	REQ'D PARKING	PROVIDED PARKING	ACCESSIBLE PARKING	EV CHARGING STATIONS	CLASS 'A' BIKE PARKING (ENCLOSED)	CLASS 'B' BIKE PARKING (COVERED)		
BUILDING A	54,156 GSF	WAREHOUSE	28	52	52	52	52 2	6	12	28
BOILDING A	1,044 GSF	FOOD SERVICE	21			3	U	12	20	
BUILDING B	39,980 GSF	WAREHOUSE	20	46	2	4	8	20		

NORWALK, CT 06851

OWNER: 375 FAIRFIELD AVE ASSOCIATES 375 FAIRFIELD AVE STAMFORD, CT 06902			
JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918 NORWALK, CT 06854 917-902-7962			
LAND USE COUNSEL: CARMODY, TORRANCE, SANDAK & HENNESSEY LLP 1055 WASHINGTON BLVD STAMFORD, CT 06901	CIVIL ENGINEER: ROCCO V. D'ANDREA, INC 6 NEIL LANE P.O. BOX 549 RIVERSIDE, CT 06878		
TRAFFIC ENGINEER: SLR CONSULTING 195 CHURCH ST, 7TH FL	LANDSCAPE DESIGN: ENVIRONMENTAL LAND SOLUTIONS		

375 I	FAIRFIE	LD AVE
MBLU:	001 / 3193	PID : 4656
DRAWING TITLE:		

DWG #	A-1
SEAL & SIGNATURE	DATE : 10/04/2023
	PROJECT #: 2308
	SCALE:

		PAGE
PERMIT APPLICATION #:	TBD	
FOR BUILDING DEPARTMEN	NT US	SE:

FOR BUILDING DEPARTMENT USE:
(A) III ADOLUTEOTO 2022
© JL ARCHITECTS 2023

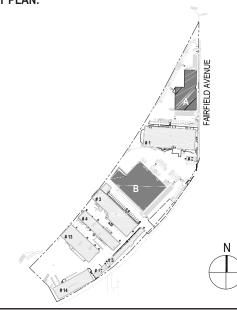
BUILDING A - SOUTHEAST AERIAL VIEW

BUILDING A - NORTHEAST AERIAL VIEW

BUILDING A - NORTHWEST AERIAL VIEW

BUILDING A - SOUTHWEST AERIAL VIEW

JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918 NORWALK, CT 06854 917-902-7962


LAND USE COUNSEL: CIVIL ENGINEER: CARMODY, TORRANCE, SANDAK & HENNESSEY 6 NEIL LANE

1055 WASHINGTON BLVD STAMFORD, CT 06901

SLR CONSULTING
195 CHURCH ST, 7TH FL
NEW HAVEN, CT 06510

SURCONSULTING
SOLUTIONS
8 KNIGHT STREET, #203
NORWALK, CT 06851

MARK DATE DESCRIPTION

PROJECT LOCATION:

SKETCH RENDERINGS -BUILDING A

SEAL & SIGNATURE **DATE**: 10/04/2023 PROJECT #: 2308 SCALE: PAGE# - of

PERMIT APPLICATION #: TBD
FOR BUILDING DEPARTMENT USE:

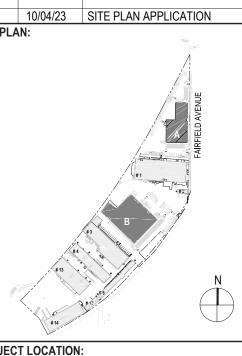
BUILDING B - NORTHEAST AERIAL VIEW

BUILDING B - NORTHWEST AERIAL VIEW

BUILDING B - SOUTHWEST AERIAL VIEW

BUILDING B - SOUTHEAST AERIAL VIEW

375 FAIRFIELD AVE STAMFORD, CT 06902


JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918 NORWALK, CT 06854

LAND USE COUNSEL: CIVIL ENGINEER: CARMODY, TORRANCE, SANDAK & HENNESSEY 6 NEIL LANE 1055 WASHINGTON BLVD STAMFORD, CT 06901

TRAFFIC ENGINEER: SLR CONSULTING

ENVIRONMENTAL LAND 195 CHURCH ST, 7TH FL
NEW HAVEN, CT 06510

SOLUTIONS
8 KNIGHT STREET, #203
NORWALK, CT 06851

PROJECT LOCATION:

375 FAIRFIELD AVE MBLU: 001/3193 PID: 4656 DRAWING TITLE:

SKETCH RENDERINGS -BUILDING B

SEAL & SIGNATURE **DATE**: 10/04/2023 PROJECT #: 2308

PAGE# - of -PERMIT APPLICATION #: TBD

FOR BUILDING DEPARTMENT USE:

METAL PANEL COLOR: DARK GREY

METAL TRIM, DOORS AND ACCENTS BLUE

INSULATED METAL PANEL METL-SPAN CF MESA (REGAL GRAY)

BUILDING B

MATERIAL SELECTIONS

INSULATED METAL PANEL METL-SPAN CF MESA (SLATE GRAY)

50 WASHI	TTLE ARCHITECTS, PLLC NGTON STREET, SUITE 91 K, CT 06854 962
ID USE COUNSEL:	CIVIL ENGINEER:
RMODY, TORRANCE, NDAK & HENNESSEY	ROCCO V. D'ANDREA, IN 6 NEIL LANE P.O. BOX 549

LLP 1055 WASHINGTON BLVD STAMFORD, CT 06901	P.O. BOX 549 RIVERSIDE, CT 06878
TRAFFIC ENGINEER:	LANDSCAPE DESIGN:
SLR CONSULTING 195 CHURCH ST, 7TH FL NEW HAVEN, CT 06510	ENVIRONMENTAL LANI SOLUTIONS 8 KNIGHT STREET, #20:

ULTING CH ST, 7TH FL N, CT 06510	ENVIRONMENTAL LAN SOLUTIONS 8 KNIGHT STREET, #20 NORWALK, CT 06851

PROJECT LOCATION:

375 FAIRFIELD AVE

MATERIAL SELECTIONS

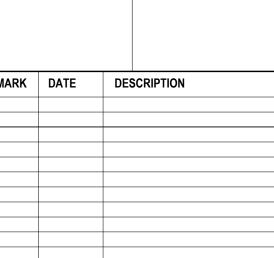
DWG#

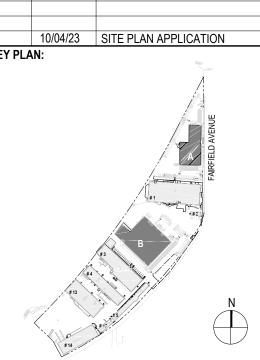
SEAL & SIGNATURE

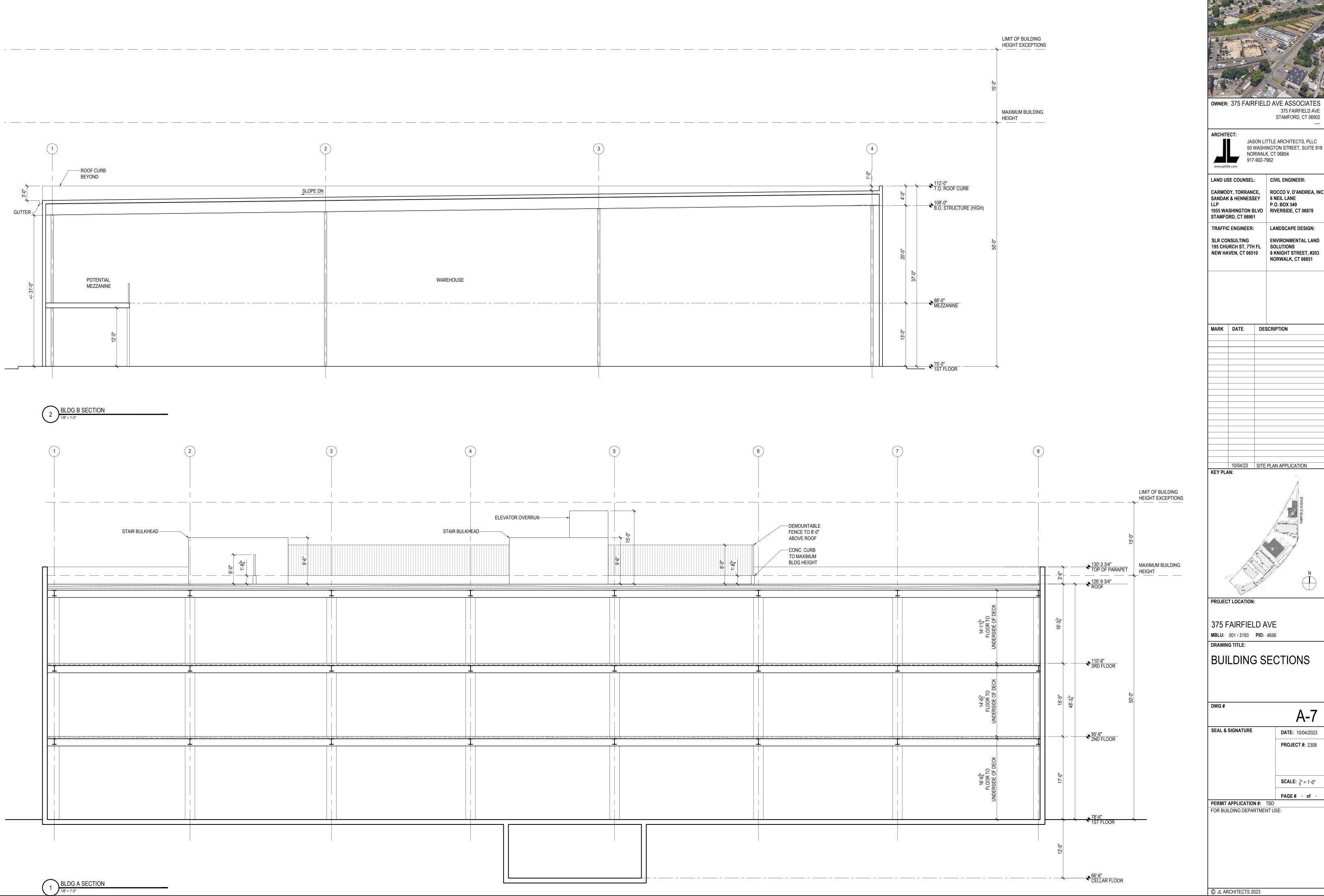
A-4 **DATE**: 10/04/2023 PROJECT #: 2308

SCALE: PAGE# - of -

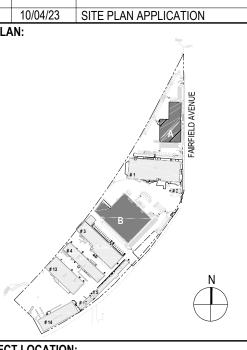
PERMIT APPLICATION #: TBD

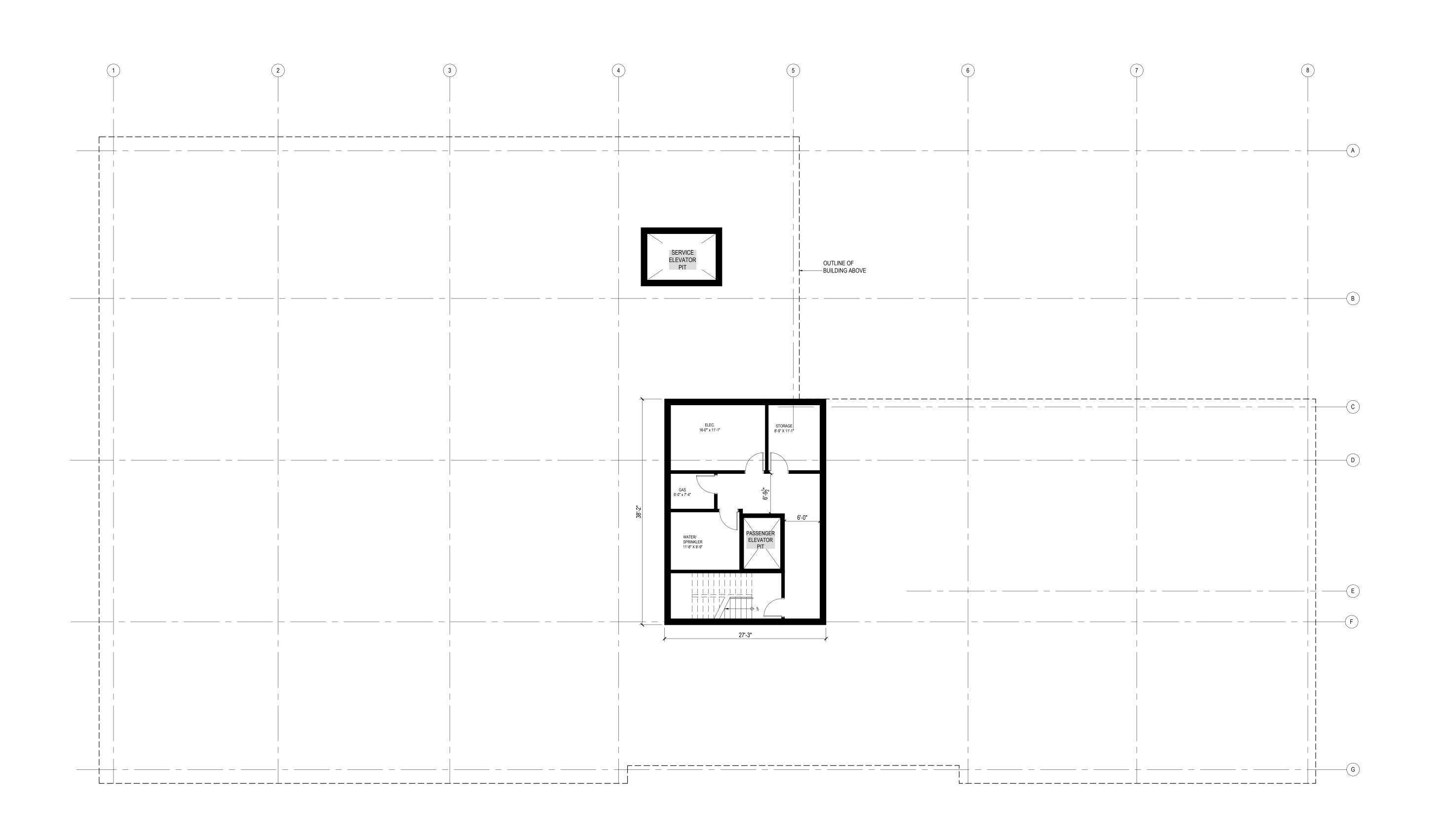

FOR BUILDING DEPARTMENT USE:





50 WASHI	TTLE ARCHITECTS, PLLC NGTON STREET, SUITE 918 K, CT 06854 962
SE COUNSEL:	CIVIL ENGINEER:
DY, TORRANCE, K & HENNESSEY ASHINGTON BLVD DRD, CT 06901	ROCCO V. D'ANDREA, IN 6 NEIL LANE P.O. BOX 549 RIVERSIDE, CT 06878


	A-6
SEAL & SIGNATURE	DATE : 10/04/2023
	PROJECT #: 2308
	SCALE : $\frac{3}{32}$ " = 1'-0"
	PAGE# - of -



50 WASH NORWAL 917-902-7	JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918 NORWALK, CT 06854 917-902-7962	
JSE COUNSEL:	CIVIL ENGINEER:	

LAND USE COUNSEL:	CIVIL ENGINEER:
CARMODY, TORRANCE, SANDAK & HENNESSEY LLP 1055 WASHINGTON BLVD STAMFORD, CT 06901	ROCCO V. D'ANDREA, INC 6 NEIL LANE P.O. BOX 549 RIVERSIDE, CT 06878
TRAFFIC ENGINEER:	LANDSCAPE DESIGN:
SLR CONSULTING 195 CHURCH ST, 7TH FL NEW HAVEN, CT 06510	ENVIRONMENTAL LAND SOLUTIONS 8 KNIGHT STREET, #203 NORWALK, CT 06851

DWG#	A-7
SEAL & SIGNATURE	DATE : 10/04/2023
	PROJECT #: 2308
	SCALE: $\frac{1}{8}$ " = 1'-0"
	PAGE# - of -
PERMIT APPLICATION #: TBD	
FOR BUILDING DEPARTMENT U	JL.

TOTAL GROSS FLOOR AREA: 1039 SQ. FT.

CORE LOCATION AND INTERIOR PARTITION WALLS ARE SHOWN FOR ILLUSTRATIVE PURPOSES ONLY AND MAY BE ADJUSTED PRIOR TO APPLICATION FOR BUILDING PERMIT.

REFER TO CIVIL DRAWINGS FOR ALL SITE IMPROVEMENTS

REFER TO LANDSCAPE DRAWINGS FOR ALL LANDSCAPE INFORMATION

ER: 375 FAIRFIELD AVE ASSOCIATES

375 FAIRFIELD AVE

STAMFORD, CT 06902

TECT:	JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918
	NORWALK, CT 06854 917-902-7962
little.com	

LAND USE COUNSEL:

CARMODY, TORRANCE, SANDAK & HENNESSEY LLP
1055 WASHINGTON BLVD STAMFORD, CT 06901

TRAFFIC ENGINEER:

LANDSCAPE DESIGN:

ENVIRONMENTAL LAND SOLUTIONS
195 CHURCH ST, 7TH FL NEW HAVEN, CT 06510

CIVIL ENGINEER:

ROCCO V. D'ANDREA, INC 6 NEIL LANE
P.O. BOX 549
RIVERSIDE, CT 06878

ENVIRONMENTAL LAND SOLUTIONS
8 KNIGHT STREET, #203

NORWALK, CT 06851

MARK DATE DESCRIPTION

AN:

N

N

N

PROJECT LOCATION:

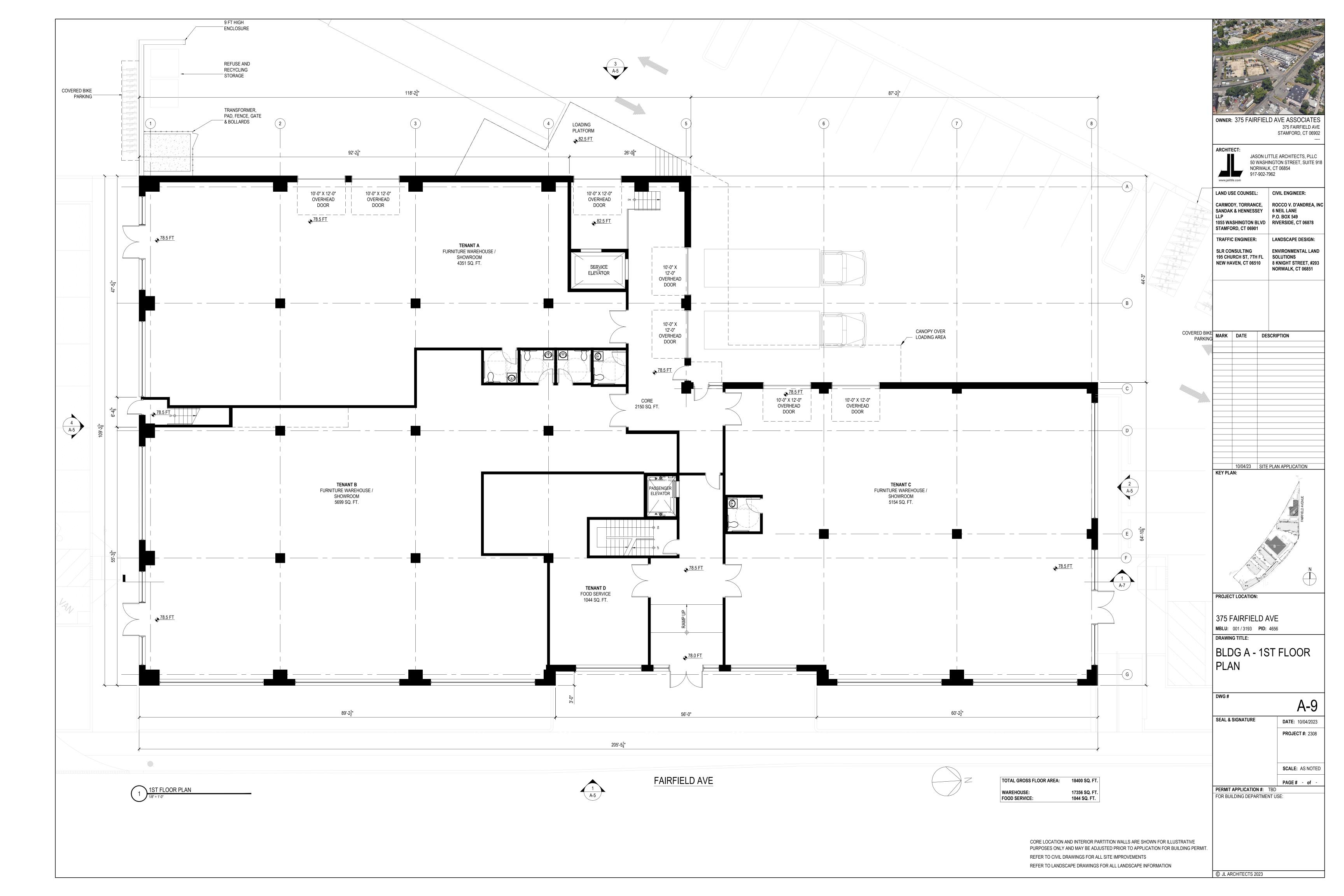
375 FAIRFIELD AVE
MBLU: 001/3193 PID: 4656

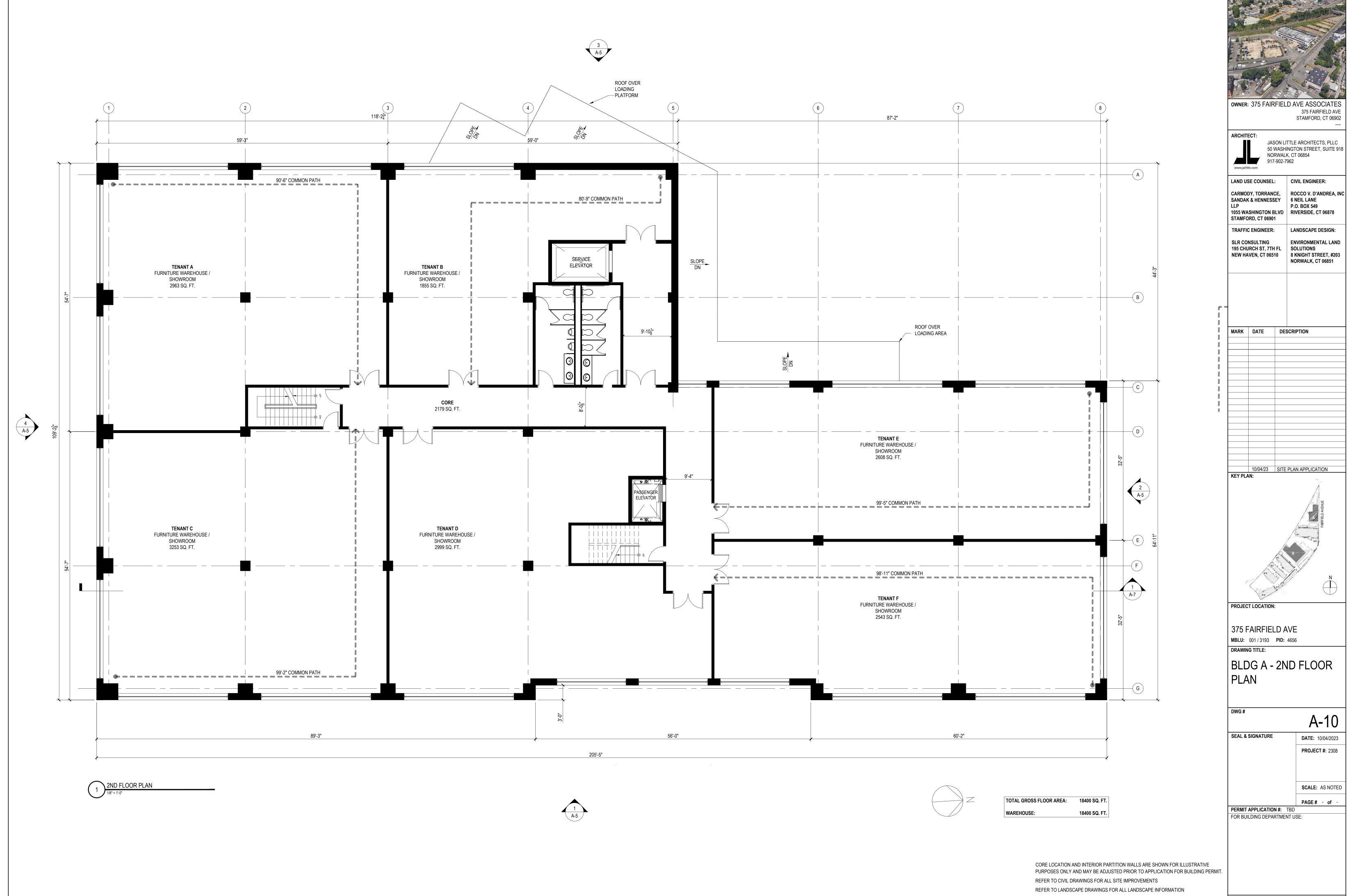
DRAWING TITLE:

BLDG A - CELLAR PLAN

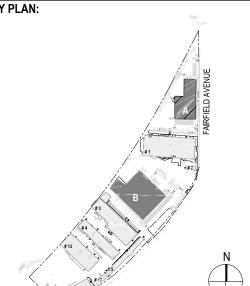
DWG #

SEAL & SIGNATURE

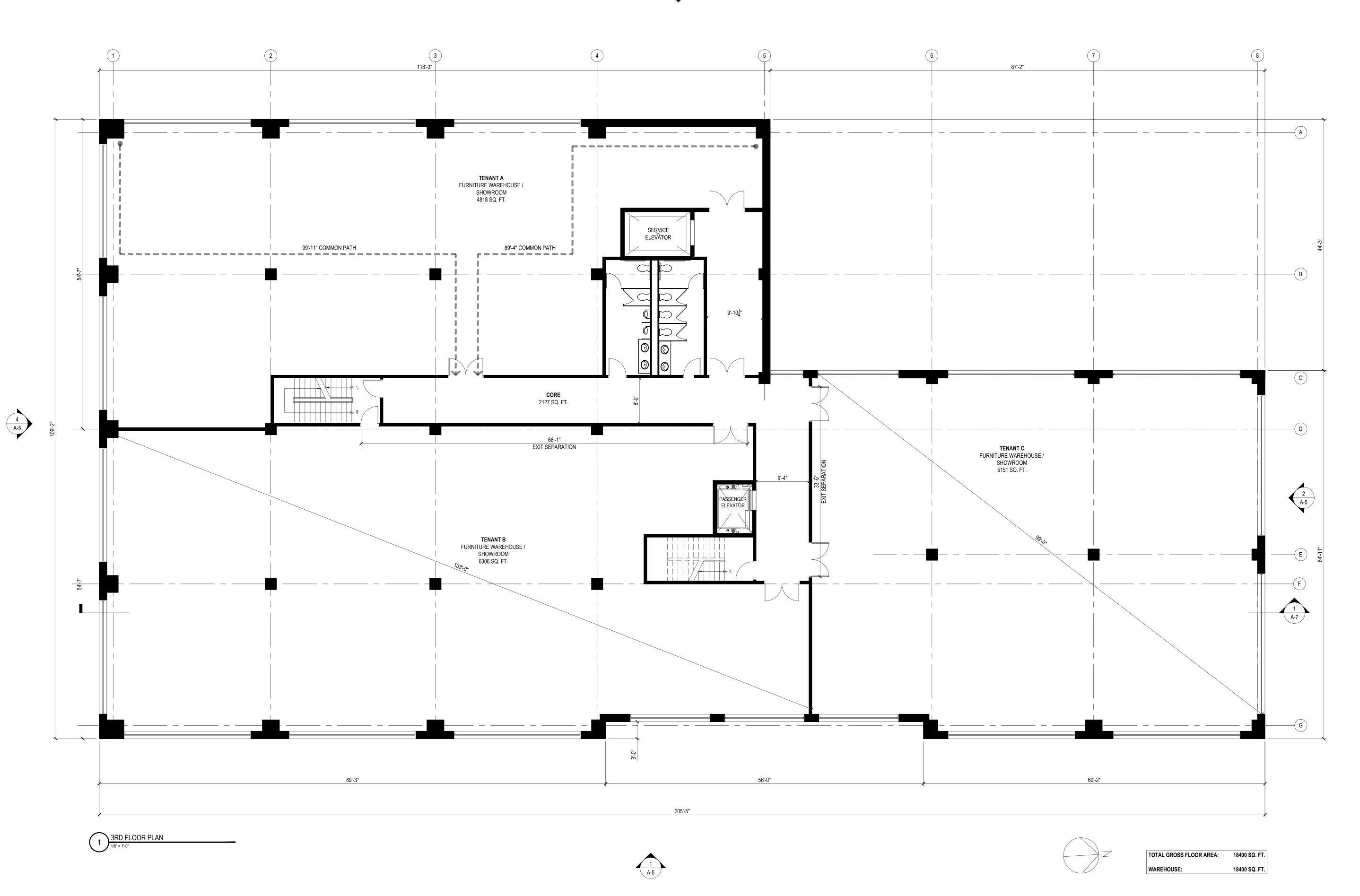

DATE: 10/04/2023


PROJECT #: 2308

SCALE: AS NOTED


PAGE # - of -

PERMIT APPLICATION #: TBD
FOR BUILDING DEPARTMENT USE:



JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918

SCALE: AS NOTED

OWNER: 375 FAIRFIELD AVE ASSOCIATES
375 FAIRFIELD AVE
STAMFORD, CT 06902

TECT:	
ittle.com	JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918 NORWALK, CT 06854 917-902-7962

LAND USE COUNSEL:

CARMODY, TORRANCE, SANDAK & HENNESSEY LLP
1055 WASHINGTON BLVD STAMFORD, CT 06901

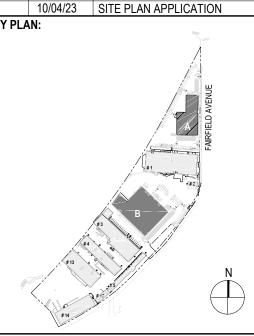
TRAFFIC ENGINEER:

LANDSCAPE DESIGN:

SLR CONSULTING

CIVIL ENGINEER:

ROCCO V. D'ANDREA, INC 6 NEIL LANE
P.O. BOX 549
RIVERSIDE, CT 06878


LANDSCAPE DESIGN:
ENVIRONMENTAL LAND

195 CHURCH ST, 7TH FL
NEW HAVEN, CT 06510

SOLUTIONS
8 KNIGHT STREET, #203
NORWALK, CT 06851

10/04/23 SITE PLAN APPLICATION
KEY PLAN:

MARK DATE DESCRIPTION

PROJECT LOCATION:

375 FAIRFIELD AVE
MBLU: 001/3193 PID: 4656
DRAWING TITLE:

BLDG A - 3RD FLOOR PLAN

DWG #

SEAL & SIGNATURE

DATE: 10/04/2023

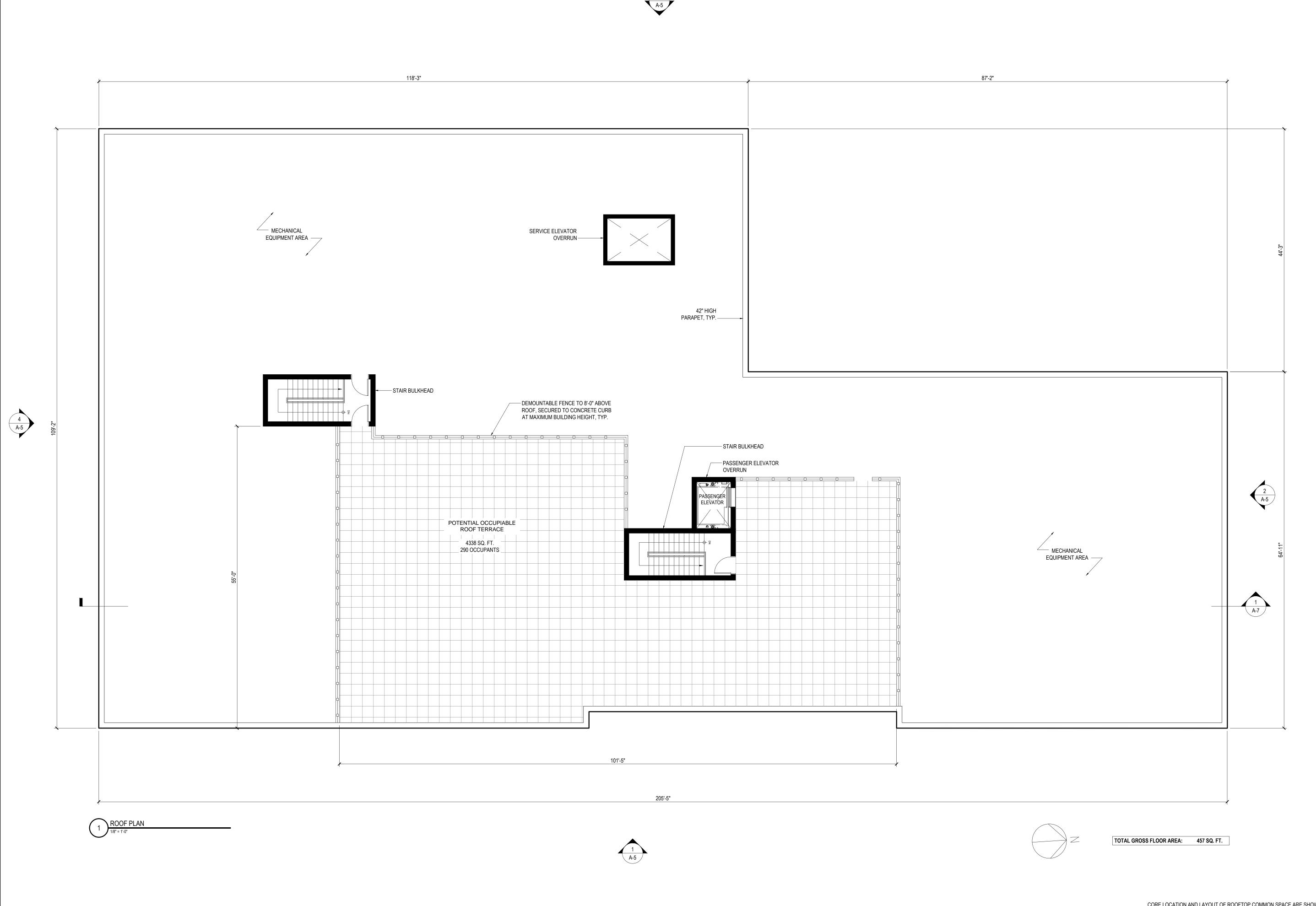
PROJECT #: 2308

SCALE: AS NOTED

PAGE # - of -

PERMIT APPLICATION #: TBD

FOR BUILDING DEPARTMENT USE:


CORE LOCATION AND INTERIOR PARTITION WALLS ARE SHOWN FOR ILLUSTRATIVE
PURPOSES ONLY AND MAY BE ADJUSTED PRIOR TO APPLICATION FOR BUILDING PERMIT.

REFER TO CIVIL DRAWINGS FOR ALL SITE IMPROVEMENTS

REFER TO LANDSCAPE DRAWINGS FOR ALL LANDSCAPE INFORMATION

© JL ARCHITECTS 2023

OWNER: 375 FAIRFIELD AVE ASSOCIATES 375 FAIRFIELD AVE STAMFORD, CT 06902

IITECT:	
ialittle.com	JASON LITTLE ARCHITECTS, PLLC 50 WASHINGTON STREET, SUITE 918 NORWALK, CT 06854 917-902-7962

LAND USE COUNSEL: CIVIL ENGINEER: CARMODY, TORRANCE, SANDAK & HENNESSEY 6 NEIL LANE LLP P.O. BOX 549 1055 WASHINGTON BLVD RIVERSIDE, CT 06878 STAMFORD, CT 06901 LANDSCAPE DESIGN: TRAFFIC ENGINEER: SLR CONSULTING
195 CHURCH ST, 7TH FL
NEW HAVEN, CT 06510

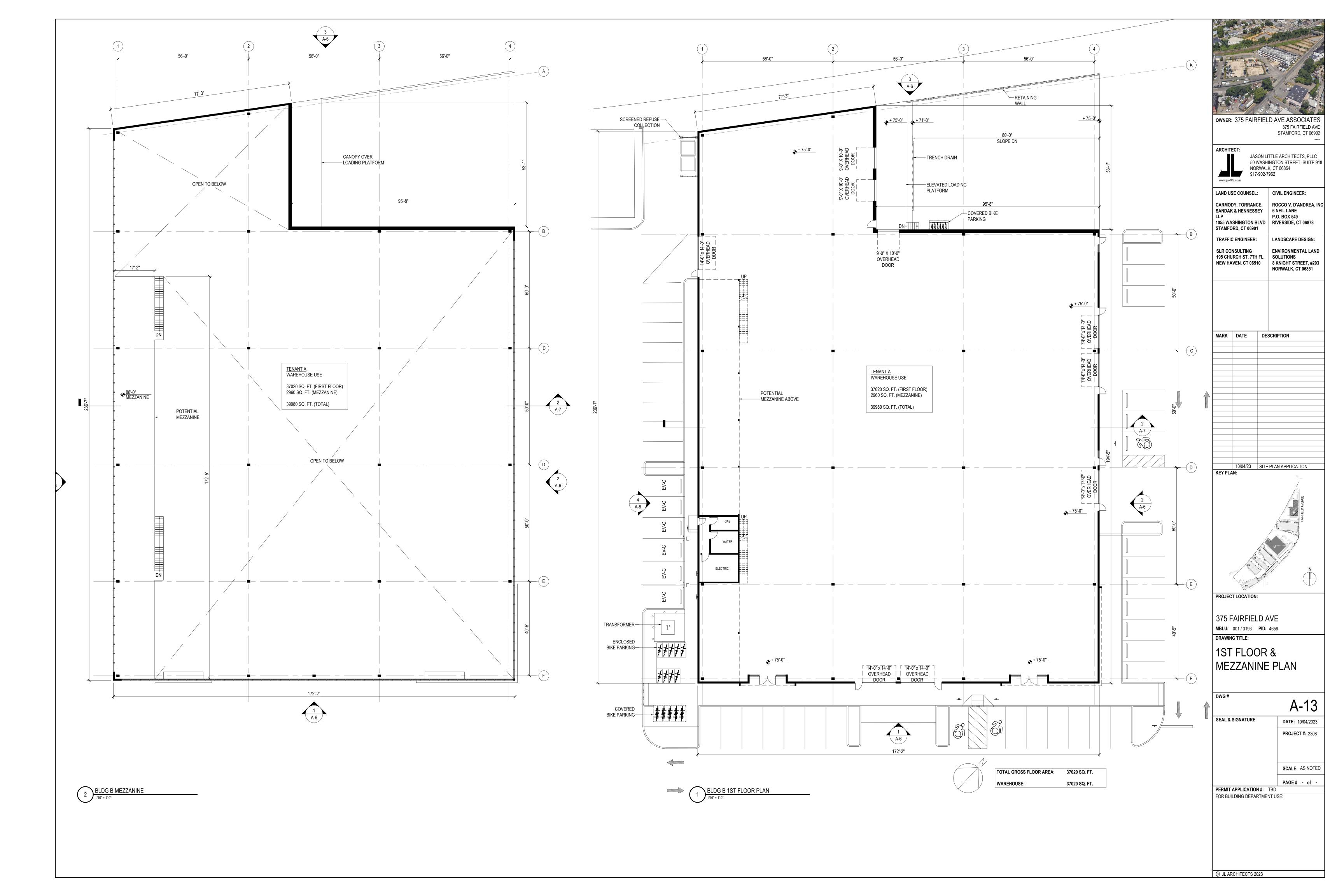
ENVIRONMENTAL LOWSOLUTIONS
8 KNIGHT STREET, #203
NORWALK, CT 06851

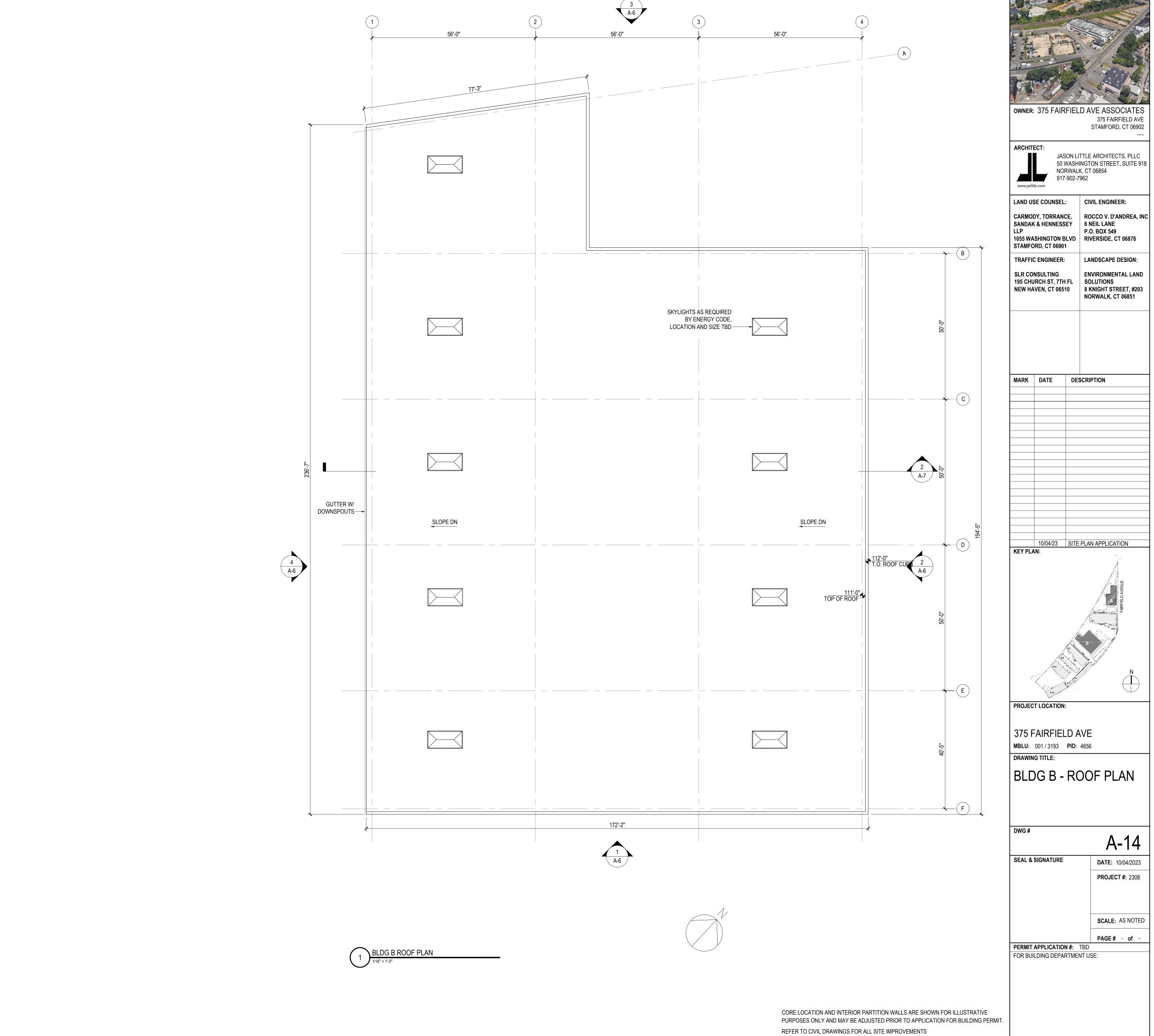
MARK DATE DESCRIPTION

10/04/23 SITE PLAN APPLICATION
KEY PLAN:

PROJECT LOCATION:

375 FAIRFIELD AVE MBLU: 001 / 3193 PID: 4656 DRAWING TITLE:


BLDG A - ROOF PLAN


A-12 SEAL & SIGNATURE **DATE**: 10/04/2023 **PROJECT #**: 2308 SCALE: AS NOTED PAGE# - of

PERMIT APPLICATION #: TBD FOR BUILDING DEPARTMENT USE:

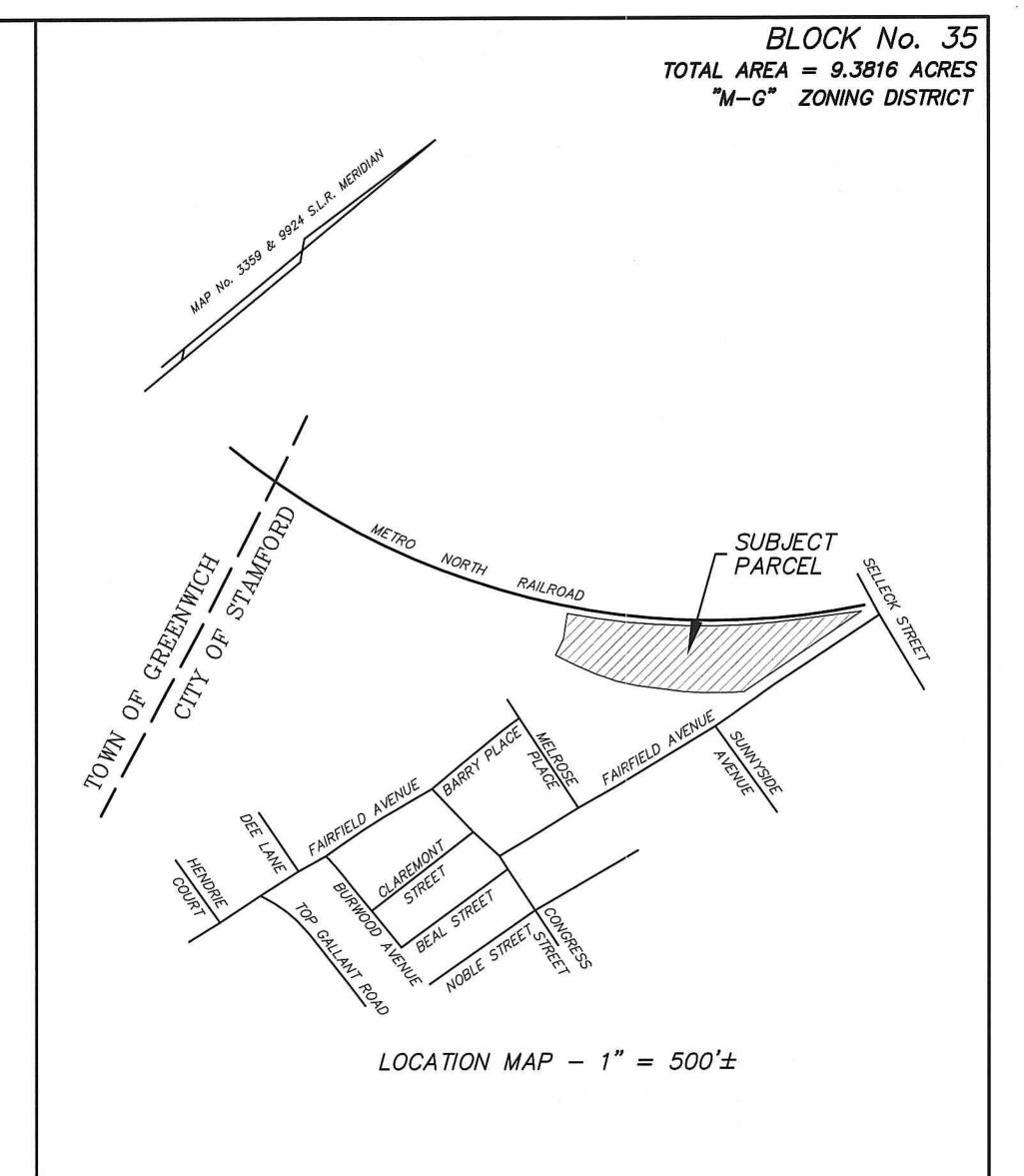
CORE LOCATION AND LAYOUT OF ROOFTOP COMMON SPACE ARE SHOWN FOR ILLUSTRATIVE PURPOSES ONLY AND MAY BE ADJUSTED PRIOR TO APPLICATION FOR BUILDING PERMIT.

REFER TO CIVIL DRAWINGS FOR ALL SITE IMPROVEMENTS REFER TO LANDSCAPE DRAWINGS FOR ALL LANDSCAPE INFORMATION

PROJECT #: 2308

© JL ARCHITECTS 2023

REFER TO LANDSCAPE DRAWINGS FOR ALL LANDSCAPE INFORMATION

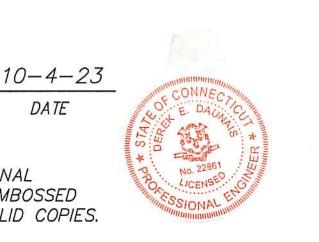

SITE PLAN REVIEW SET COMMERCIAL DEVELOPMENT

LOCATION

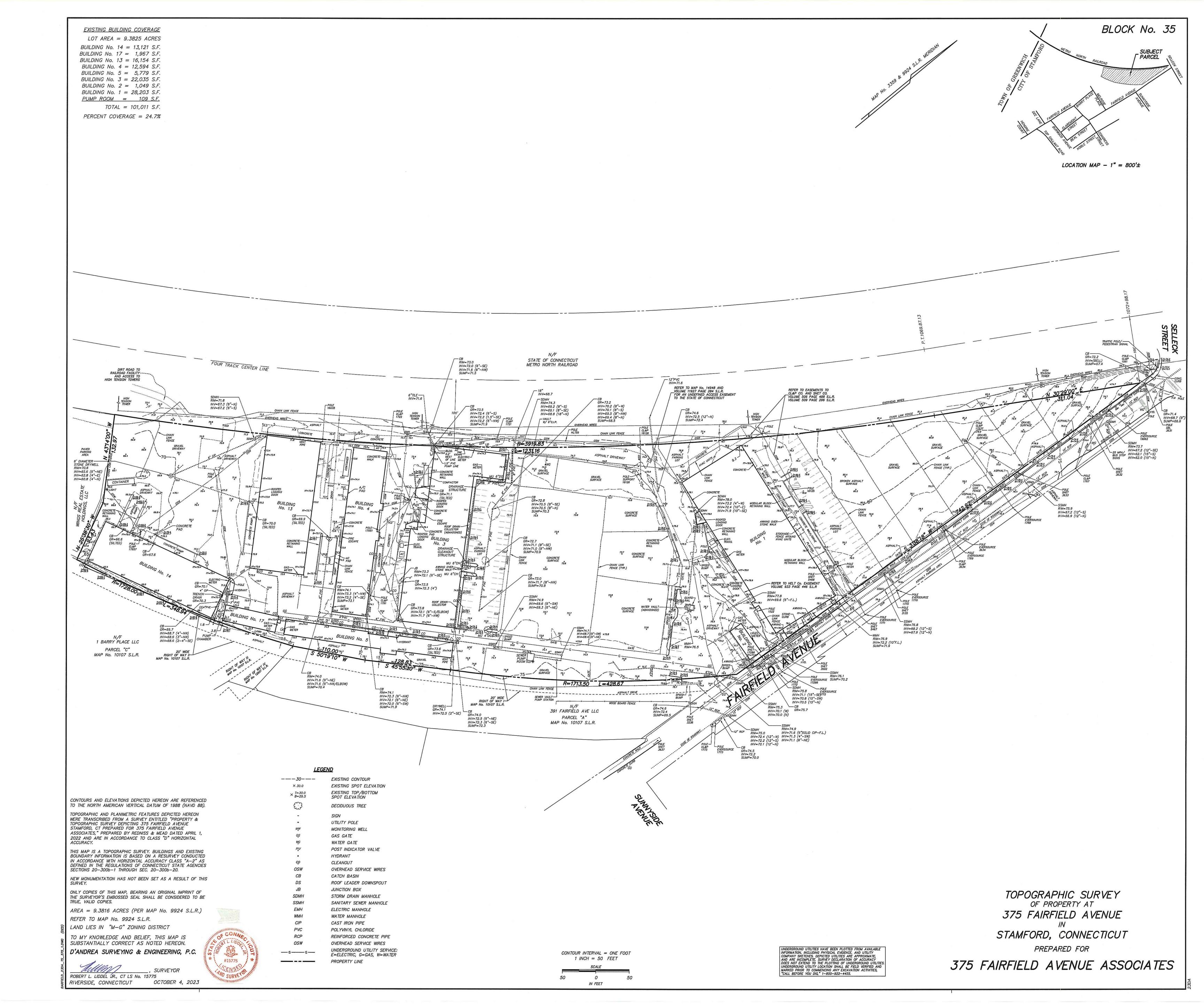
375 FAIRFIELD AVENUE STAMFORD, CONNECTICUT

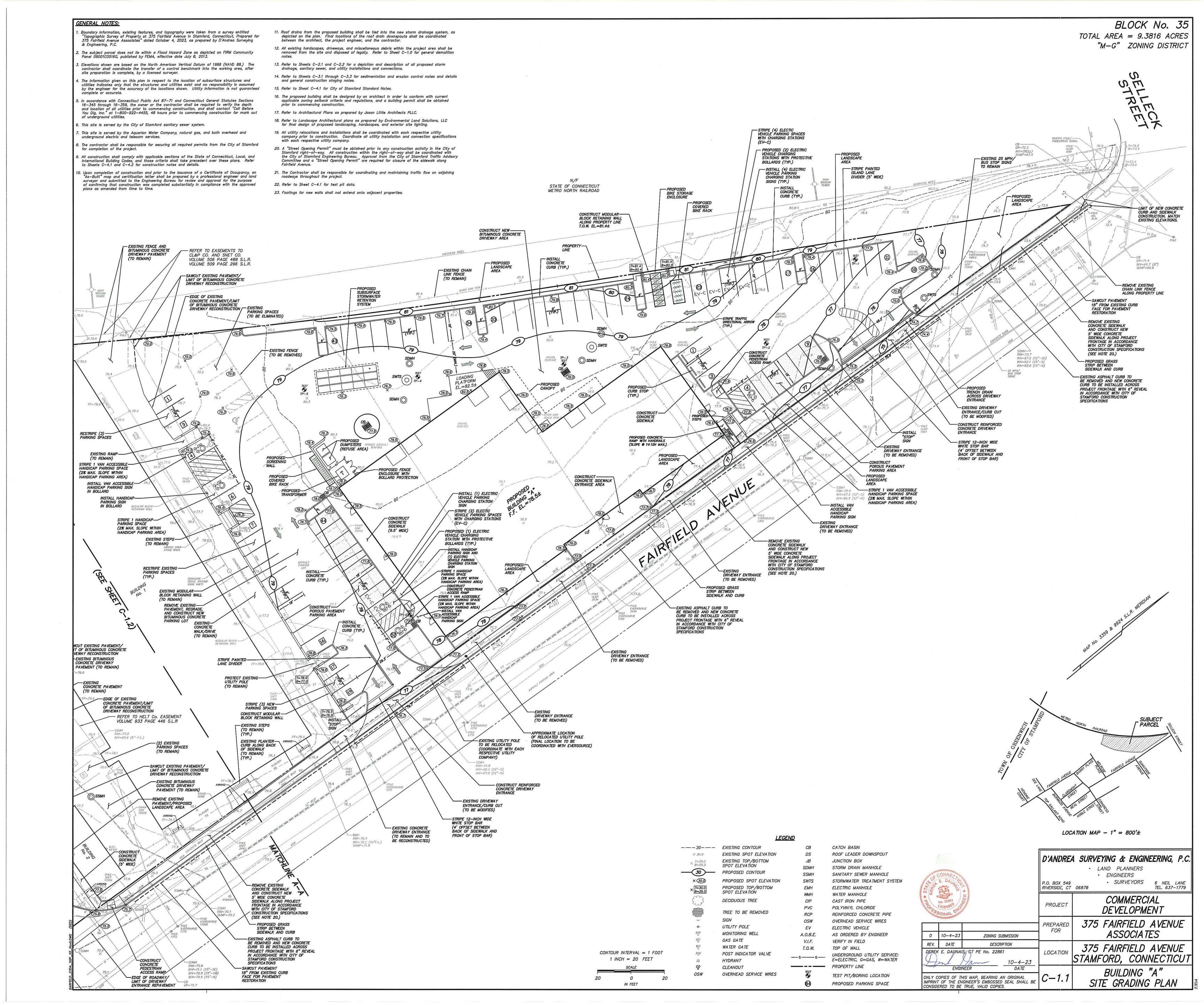
PREPARED FOR

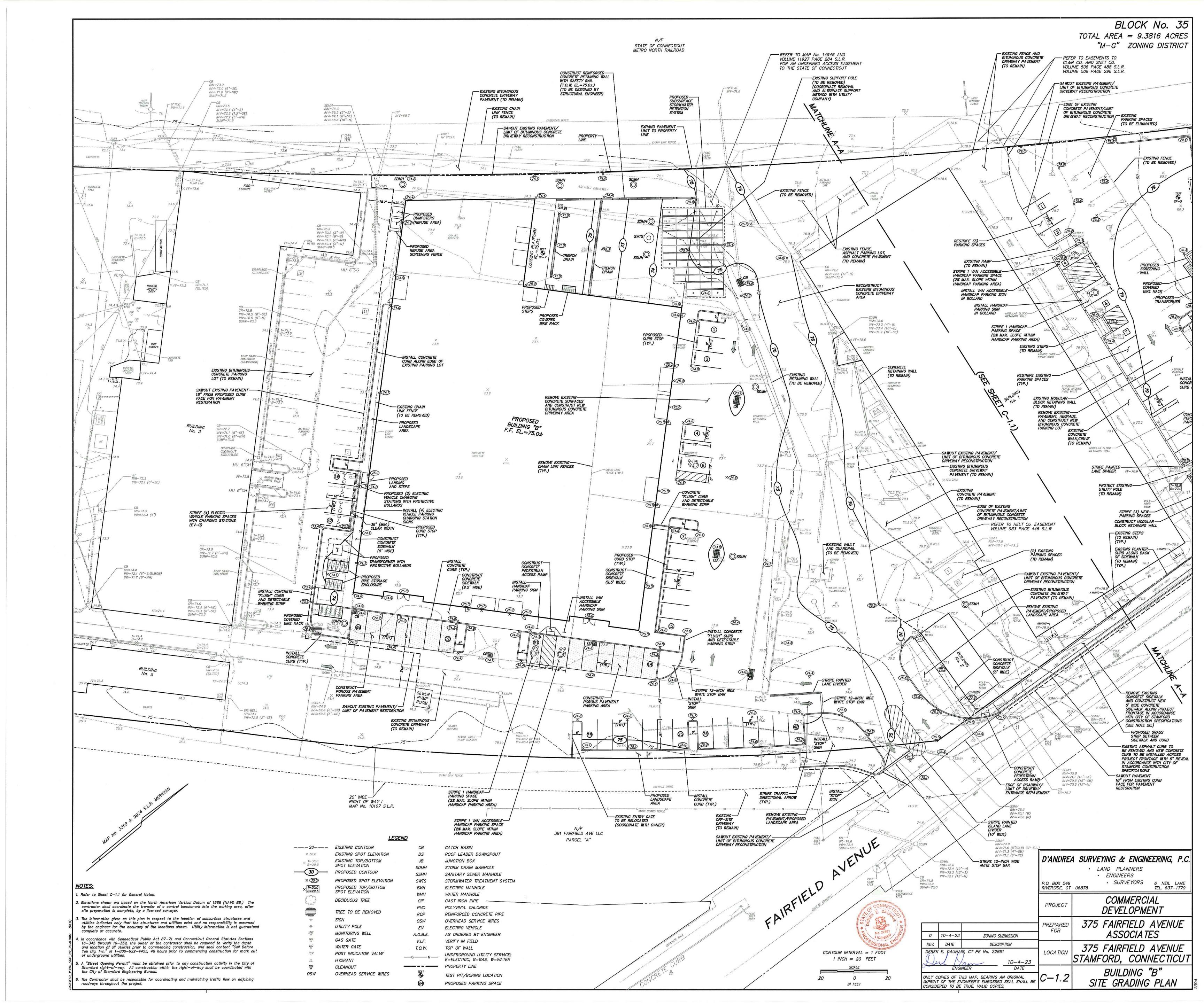
375 FAIRFIELD AVENUE ASSOCIATES

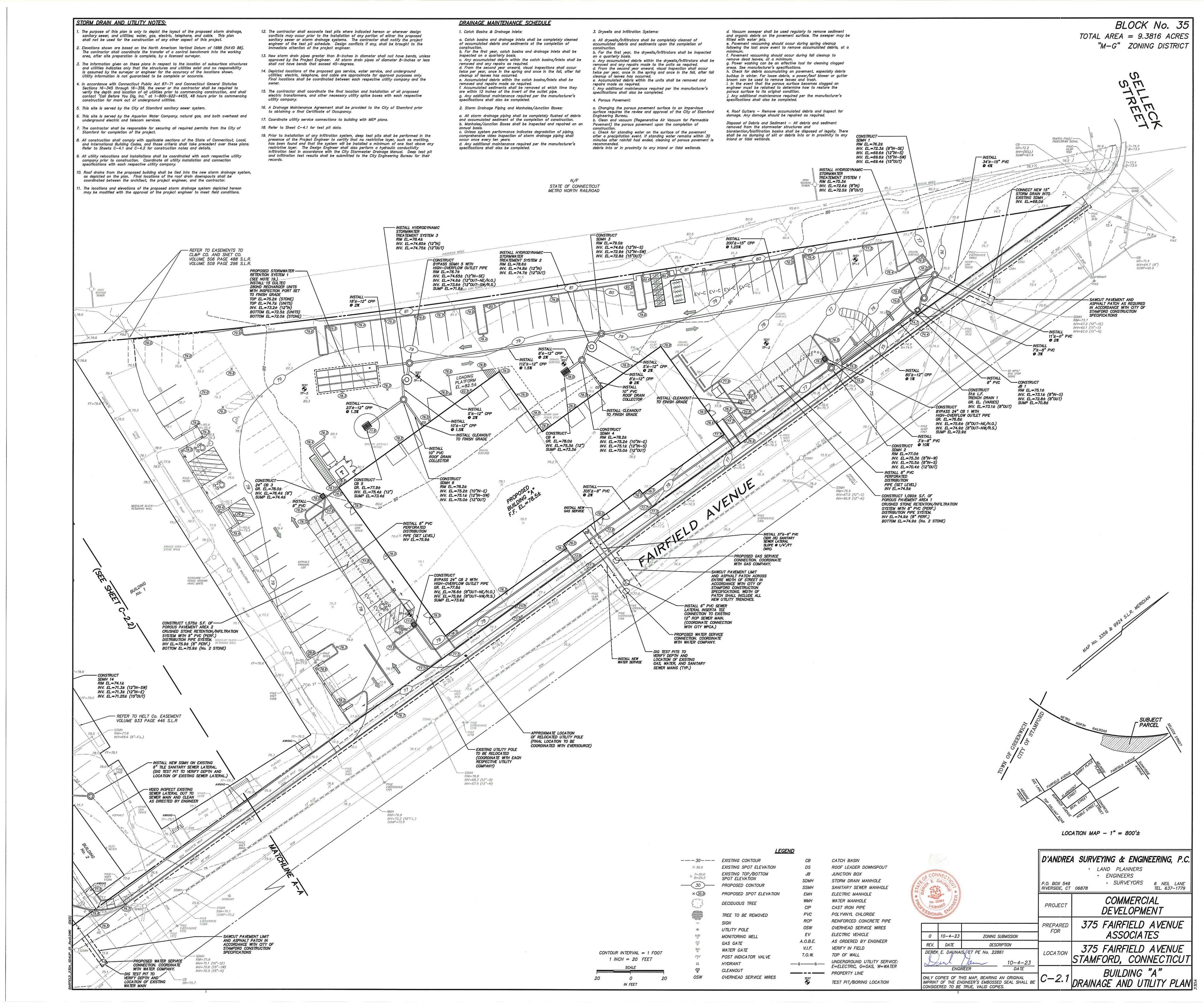

SHEET INDEX

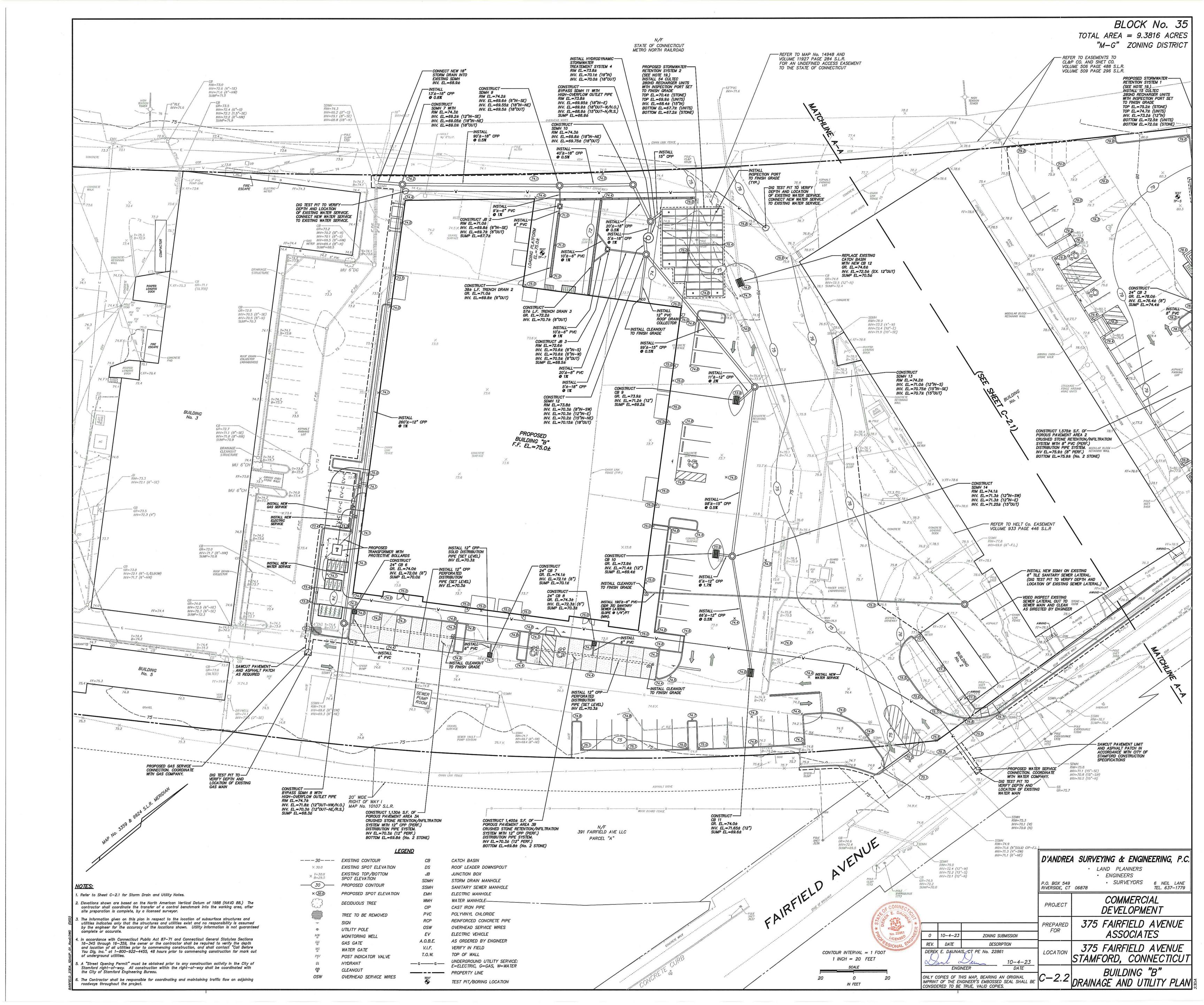
<u>SHEET</u>	<u>TITLE</u>	REVISION	<u>DATE</u>
	TOPOGRAPHIC SURVEY - "EXISTING CONDITIONS"	Ο	10-4-23
C - 1.1	BUILDING "A" SITE GRADING PLAN	0	10-4-23
C-1.2	BUILDING "B" SITE GRADING PLAN	0	10 - 4 - 23
C - 2.1	BUILDING "A" DRAINAGE AND UTILITY PLAN	0	10-4-23
C - 2.2	BUILDING "B" DRAINAGE AND UTILITY PLAN	O	10 - 4 - 23
C - 3.1	BUILDING "A" SEDIMENTATION AND EROSION CONTROL P	LAN 0	10 - 4 - 23
C - 3.2	BUILDING "B" SEDIMENTATION AND EROSION CONTROL P	LAN 0	10 - 4 - 23
C - 4.1	NOTES AND DETAILS	0	10-4-23
C - 4.2	DETAILS	0	10-4-23
C - 5.0	LOW-IMPACT DEVELOPMENT PLAN	0	10 - 4 - 23

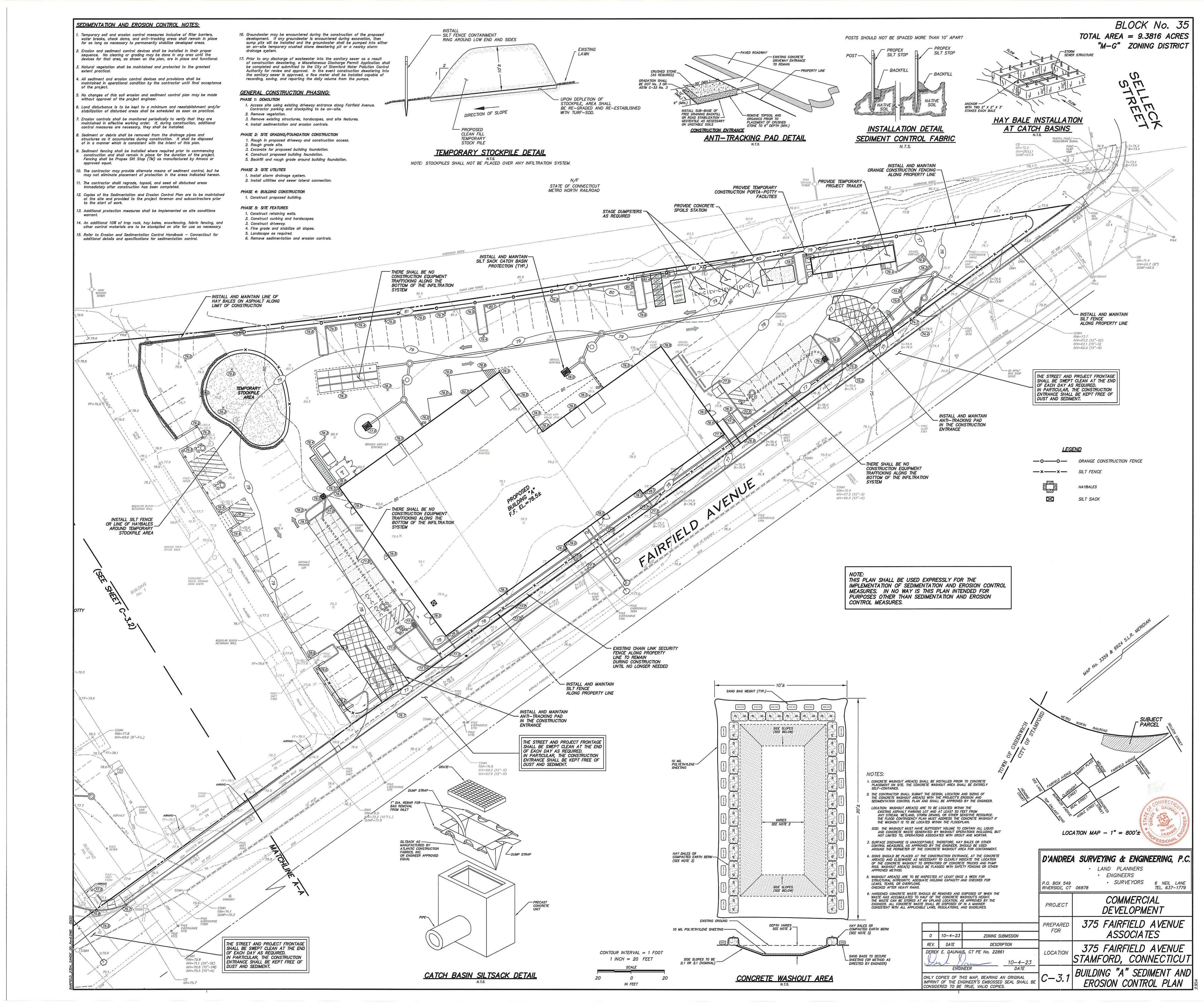

ENGINEERING PLANS PREPARED BY:

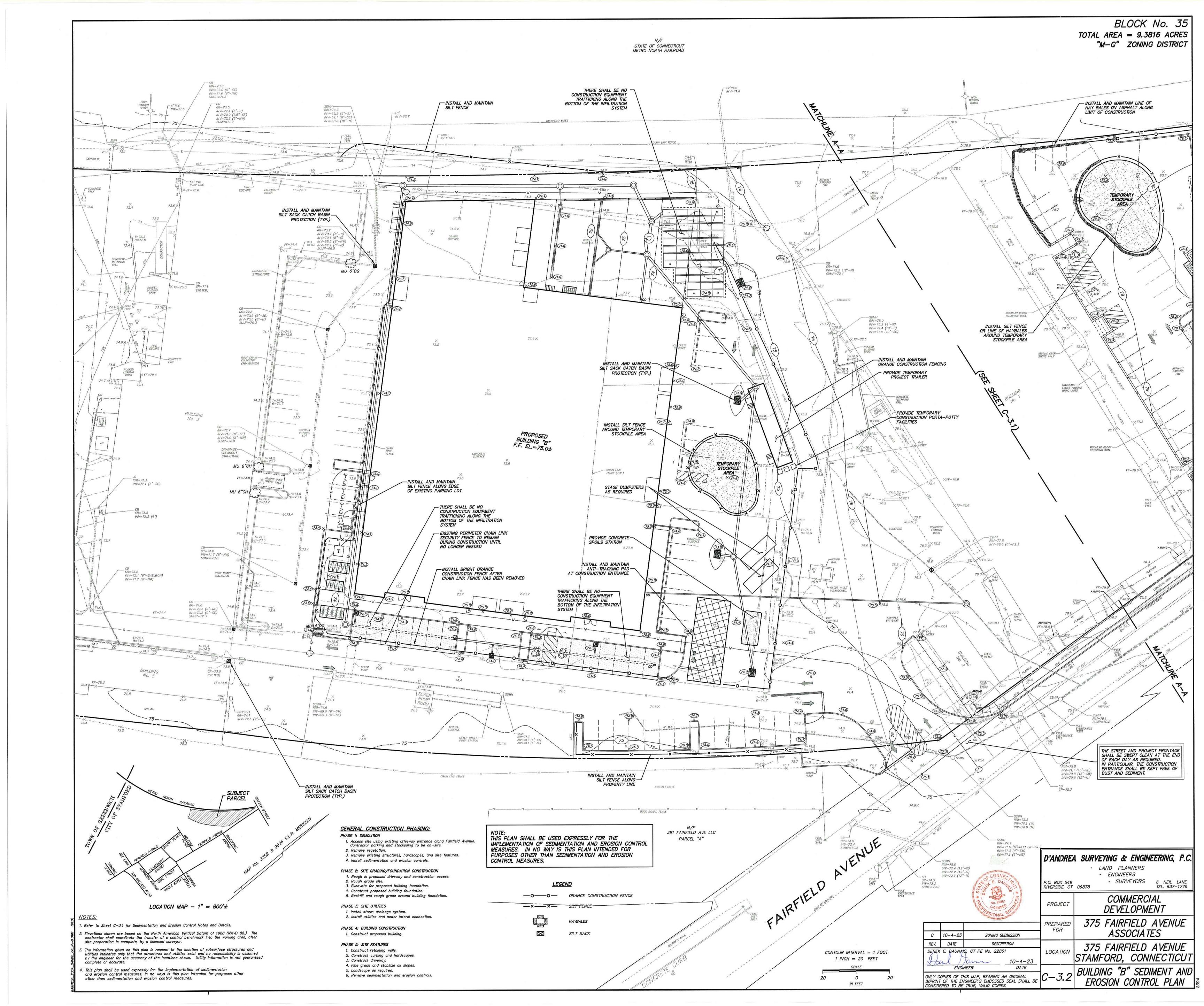

D'ANDREA SURVEYING & ENGINEERING, P.C. DEREK E. DAUNAIS, CT. PE No. 22861


ONLY COPIES OF THIS SET, BEARING AN ORIGINAL IMPRINT OF THE ENGINEER'S / SURVEYOR'S EMBOSSED SEAL SHALL BE CONSIDERED TO BE TRUE, VALID COPIES.

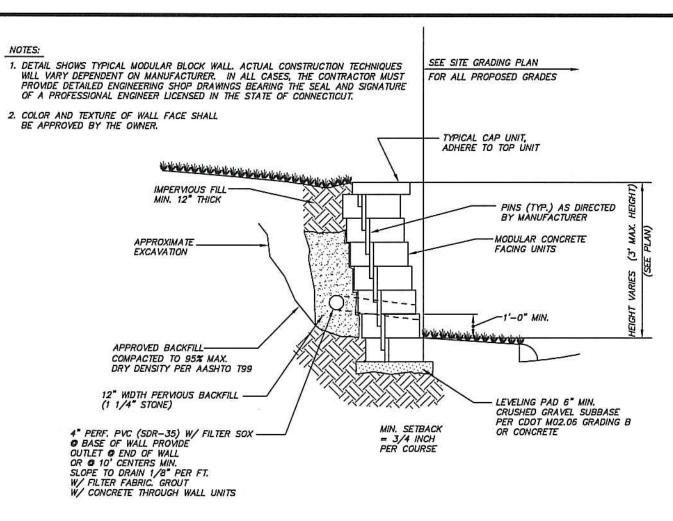



			D'ANDRE	A SURVEYING & ENGINEERING, P.C.	
			• LAND PLANNERS • ENGINEERS		
			P.O. BOX 549 RIVERSIDE, CT		
			PROJECT	COMMERCIAL DEVELOPMENT	
			PREPARED FOR	375 FAIRFIELD AVENUE ASSOCIATES	
			LOCATION	375 FAIRFIELD AVENUE STAMFORD, CONNECTICUT	
0	10-4-23	ZONING SUBMISSION		COVER SHEET	
REV.	DATE	DESCRIPTION			

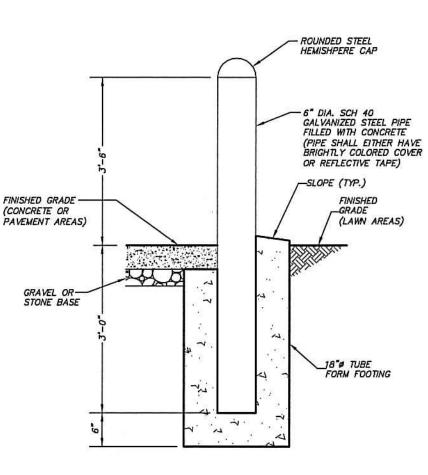




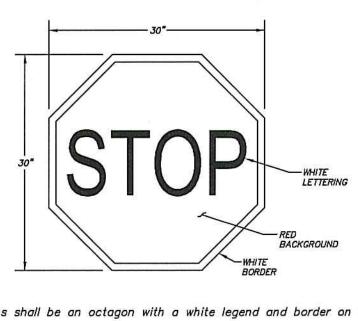
CONSTRUCTION NOTES:


- . The contractor shall obtain all appropriate permits prior to commencing construction. 2. The contractor shall be solely responsible to coordinate his work with the work being done by others. The contractor shall likewise bear the responsibility for delays or other factors related to the work by others. No claims shall be allowed due to the contractor's failure to adequately
- 3. All construction shall be inspected by a professional engineer prior to backfill and as the work progresses.
- 4. The project engineer shall be notified a minimum of three working days prior to the commencement of each phase of construction.
- 5. Appropriate measures shall be taken to control any sedimentation and erosion which may result during construction.
- 6. All specimen trees shall be protected during the construction period, except those specifically designated to be removed, in accordance with generally accepted standards.
- . There shall be no dumping of construction debris and/or excess excavated material into or in proximity to any inland or tidal wetland areas. All excavated material shall be stockpiled and contained on-site within silt fencing. The contractor shall be responsible for the removal of all excess material excavated during construction. All excess material shall be removed in a careful and environmetally sound manner and shall be disposed of legally off-site.
- 8. The proposed building shall be designed by the architect in order to conform with current applicable zoning setback criteria and regulations, and a building permit shall be obtained prior to commencing construction.
- 9. Existing utilities in conflict through or above this parcel shall be relocated as directed by the appropriate utility company or the owner. The contractor shall excavate test pits to verify the location and depth of utilities where conflicts may exist.
- 10. Pavement replacement shall be bituminous concrete, placed in accordance with the City of Stamford standards and/or Connecticut State Highway specifications.
- 1. Shoulders and disturbed areas shall receive four inches of topsoil; fine graded and seeded as soon as practical to prevent erosion.
- 12. The contractor shall not commence any paving until the grading and shaping of the compacted gravel base has been approved by the project engineer.
- 13. Regrading, filling, and other such alterations to the site shall be restricted to the minimum level necessary to complete the project as shown on the plan.
- 14. Existing inverts on storm drains, sanitary sewers, and utility conduits shall be field verified where appropriate, before commencing construction. The contractor shall excavate test pits where indicated hereon or wherever design conflicts may occur. The contractor shall notify the project engineer of the test pit schedule. Design conflicts if any, shall be brought to the immediate attention of the project engineer. Plate or backfill and patch test pits as directed by the
- 15. Manhole structures shall be precast concrete with gaskets as manufactured by Eastern Precast Co., Inc. or engineer approved equal, unless noted otherwise.
- 16. Precast concrete cone section to be eccentric. Flat slab tops to have eccentric openings. Eccentric cone sections shall be used when the vertical distance between manhole frame and top of highest pipe is six (6) feet or greater, otherwise flat slab tops shall be used. Aluminum manhole steps (drop form type) shall be provided in all manholes at 12 inch intervals. Each step shall be capable of supporting a minimum load of 1,000 pounds. Wall joints to be "O-ring" rubber gasket type with the interior and exterior faces of joints to be sealed with waterproof non-shrink grout.
- 17. Connection between manholes and PVC sanitary sewer or storm drain pipes shall be made with flexible rubber boot type connections sealed water tight with a stainless steel clamp. The contractor shall make sure that all connections of new sanitary sewers to manholes are water tight. Connections to manholes for reinforced concrete storm and sanitary sewer pipe shall be made with concrete brick masonry and non-shrink grout. The Contractor shall make sure that all connections of new sanitary sewers to manholes are water tight.

18. All gravity PVC storm drain and sanitary sewer pipes shall conform to ASTM D 3034 "Standard


- Specification for type PSM Poly Vinyl Chloride (PVC) Sewer Pipe and Fittings" or approved equal 19. Corrugated plastic pipe (CPP) shall be HDPE, N-12, smooth interior pipe as manufactured by
- Advanced Drainage Systems, Inc. or engineer approved equal and shall comply with AASHTO M294-94 Type S (smooth inner liner).
- 20. All reinforced concrete pipe (RCP) shall be Class IV.
- 21. Where unsuitable foundation is encountered during construction of storm drains or sanitary sewers, the contractor shall remove the unsuitable material and replace it with other material approved by the project engineer.
- 22. Bedding and backfill material shall conform to ASTM D2321 specification "standard recommended practice for underground installations of flexible thermoplastic sewer pipe (PVC).
- 23. All drainage and sewer conduits within the City right-of-way shall have 2 foot minimum cover or be encased in concrete if located under a paved or traveled way.
- 24. All storm drainage and sewer connections shall be sloped at 2% (minimum) or as otherwise noted. 25. The contractor shall provide all equipment, tools, labor and materials necessary to satisfactorily clean and remove all visible obstructions, dirt, sand, sludge, roots, gravel, stones, etc., from the storm drains, sanitary sewers, and structures.
- 26. Processed aggregate shall be in accordance with the City of Stamford standards and/or Connecticut State Highway specifications.
- 27. Roadway pavement shall be 2 course bituminous concrete placed in accordance with the City of Stamford standards and/or Connecticut State Highway specifications.
- 28. All existing manhole frames, catch basin grates, and utility structures shall be adjusted to new finish grade as required. Contractor to coordinate with existing utility companies to ensure their facilities are adjusted to finish grade.
- 29. Curbs and sidewalks in the City right-of-way shall be constructed in accordance with the City of Stamford specifications. The contractor shall pay specific attention to the location of
- 30. All traffic control devices including traffic signs and pavement markings shall be installed in conformance with the Manual on Uniform Traffic Control Devices for Streets and Highways, U.S. Department of Transportation, Federal Highway Administration, Millenium Edition, as amended to

STANDARD CITY OF STAMFORD NOTES:


- 1. A Street Opening Permit is required for all work within the City of Stamford Right-of-Way. 2. All work within the City of Stamford Right—of—Way shall be constructed to City of Stamford requirements, the State of Connecticut Basic Building Code and the Connecticut Guidelines for Soil Erosion and Sedimentation Control.
- 3. The Engineering Bureau of the City of Stamford shall be notified three days prior to any commencement of construction or work within the City of Stamford Right-of-Way.
- 4. Trees within the City of Stamford Right-of-Way to be removed shall be posted in accordance with the Tree Ordinance.
- 5. Prior to any excavation the Contractor and/or Applicant/Owner, in accordance with Public Act 77-350, shall be required to contact "Call Before You Dig" at 1-800-922-4455 for mark out of underground utilities.
- 6. All retaining walls three (3) feet or higher measured from finished grade at the bottom of the wall to finished grade at the top of the wall and retaining walls supporting a surcharge or impounding Class I, II or III-A liquids are required to have a Building Permit. Retaining walls shall be designed and inspected during construction by a Professional Engineer licensed in the State of Connecticut. Prior to the issuance of a Certificate of Occupancy, retaining walls shall be certified by a Professional Engineer licensed in the State of Connecticut.
- 7. Certification will be required by a professional engineer licensed in the State of Connecticut that work has been completed in compliance with the approved drawings.
- 8. A Final Improvement Location Survey will be required by a professional land surveyor licensed in the State of Connecticut.
- 9. Connection to a city-owned storm sewer shall require the Waiver Covering Storm Sewer Connection to be filed with the City of Stamford Engineering Bureau.
- 10. Granite block or other decorative stone or brick, depressed curb, driveway apron and curbing within the City of Stamford Right-of-Way shall require the Waiver Covering Granite Block Depressed Curb and Driveway Aprons to be filed with the City of Stamford Engineering Bureau.
- 11. Sediment and erosion controls shall be maintained and repaired as necessary throughout construction until the site is stabilized.
- 12. To obtain a Certificate of Occupancy, submittal must include all items outlined in the Checklist for Certificate of Occupancy (Appendix D of the City of Stamford Drainage Manual).

TYPICAL SECTION - UNREINFORCED LOW-PROFILE MODULAR CONCRETE BLOCK RETAINING WALL

BOLLARD/PIPE GUARD DETAIL

All "STOP" signs shall be an octagon with a white legend and border on a red The standard "STOP" sign shall be 30 x 30 inches.

All "STOP" signs shall be installed at a height of at least 7 feet, measured from the bottom of the sign to the near edge of the pavement. "STOP" sign legend, color, size, and installation shall be in conformance with the current edition of the Manual on Uniform Traffic Control Devices for Streets and Highways, U.S. Department of Transportation, Federal Highway Administration.

"STOP" SIGN DETAIL (R1-1)

"RESERVED PARKING PERMIT REQUIRED" & "VAN ACCESSIBLE" signs shall have white lettering against a blue background. All accessible signage sizes, lettering, and symbols shall comply with federal and

state specifications. All accessible signage shall be installed 60" (minimum) above the floor or ground surface of the parking space, measured to the bottom of the sign. Confirm fine amount prior to sign fabrication.

RESERVED PARKING SPACE SIGN DETAIL

EXISTING PAVEMENT

* PROCESSED AGGREGATE SUBBASE ON PROPERLY SHAPED AND COMPACTED SUBGRADE

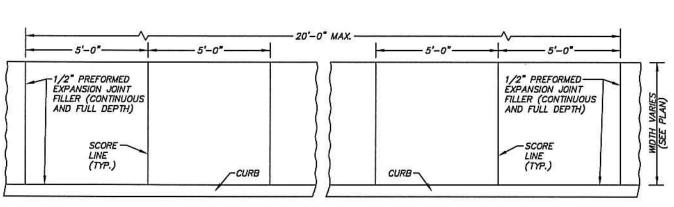
- 2 1/2" BITUMINOUS CONCRETE BINDER COURSE (CLASS-1)

DETAIL FOR TRENCH REPAIR

NOTES:

1. ALL WORK TO BE IN ACCORDANCE WITH THE REQUIREMENTS OF THE CONNECTICUT
DEPARTMENT OF TRANSPORTATION'S STANDARD SPECIFICATIONS FOR ROADS, BRIDGES AND
INCIDENTAL CONSTRUCTION, LATEST EDITION, OR AS DIRECTED BY PROJECT ENGINEER.

2. SHOULD THE TOTAL THICKNESS OF EXISTING PAVEMENT EXCEED THICKNESS OF PROPOSED BINDER PLUS WEARING COURSE, THE THICKNESS OF BINDER COURSE SHALL BE INCREASED SUCH THAT THE TOTAL THICKNESS OF REPAIR BITUMINOUS PAVEMENT MATCHES EXISTING.


4. TACK COAT SHALL BE APPLIED TO THE FULL DEPTH OF EXISTING PAVEMENT ALONG THE PERIMETER EDGES OF THE TRENCH AND ALL CONTACT SURFACES SUCH AS CURBING AND STRUCTURES (MANHOLES AND CATCH BASINS). TACK COAT SHALL BE APPLIED BETWEEN

HMA S.O5 BINDER COURSE SHALL NOT BE PLACED IN LIFTS GREATER THAN 2 1/2" COMPACTED THICKNESS.

3. CUTBACKS SHALL BE MADE IMMEDIATELY PRIOR TO TRENCH REPAIR AND NOT WHEN TRENCH IS EXCAVATED. CUTBACKS SHALL BE STRAIGHT AND EVEN TO ELIMINATE IRREGULAR

BITUMINOUS CONCRETE DRIVEWAY

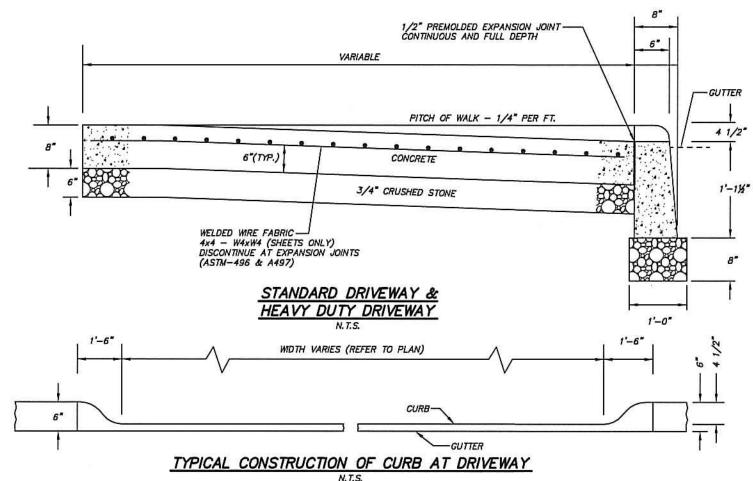
COMPACTED 1 1/2" BITUMINOUS CONCRETE WEARING COURSE SUPERPAVE HMA S.0375

CONCRETE FOR THE SIDEWALK SHALL BE PLACED TO A UNIFORM DEPTH OF FIVE (5) INCHES UPON A SIX (6) INCH 3/4" CRUSHED STONE BASE. THE SURFACE EDGES OF EACH PANEL SHALL BE ROUNDED TO A RADIUS OF 1/4 INCH.

CONCRETE SHALL BE CONDOT CLASS "F" CEMENT TYPE II (4,400 PSI MIN.) AND SHALL HAVE BETWEEN 6-7% AIR ENTRAINMENT. WELDED WIRE FABRIC (WWF) SHALL BE 6x6 - W2.9xW2.9 (SHEETS ONLY). DISCONTINUE AT EXPANSION JOINTS.

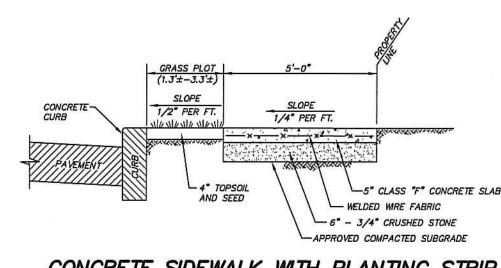
WWF SHALL BE INSTALLED MID DEPTH OF SIDEWALK AND SHALL BE SUPPORTED ON CONCRETE BLOCK OR OTHER APPROVED MATERIAL. A 1/2" THICK APPROVED PREFORMED EXPANSION JOINT FILLER SHALL BE PLACED TRANSVERSELY EVERY 20 FT. MAX. AND BETWEEN NEW CONCRETE CURBING AND SIDEWALKS. A 1/2" THICK APPROVED PREFORMED EXPANSION JOINT FILLER SHALL BE UTILIZED BETWEEN ALL RIGID STRUCTURES (INCLUDING WALLS) AND NEW SIDEWALK WORK.

A MARKED OR SCORED CONTROL JOINT SHALL BE MADE AT FIVE FOOT INTERVALS BETWEEN BITUMINOUS JOINTS. CONTROL JOINTS SHALL BE 1" DEEP. ADDITIONAL CONTROL JOINTS SHALL BE PLACED AS REQUIRED TO ELIMINATE ANY CONDITION WHICH
WELL DESCRIPTIONS OF STRUCTURES). JOINTS SHALL BE ORIENTED


AS DIRECTED BY THE PROJECT ENGINEER. SURFACE SHALL BE GIVEN A BROOM FINISH ORIENTED PERPENDICULAR TO DIRECTION OF PEDESTRIAN ANY CHANGES REQUIRED BY LOCAL FIELD CONDITIONS SHALL BE MADE ONLY BY ORDER OF THE PROJECT ENGINEER OR THE CITY ENGINEER.

PLAN OF A SECTION OF CONCRETE SIDEWALK

SLOPED CURBING INCLUDED—


2' WIDE DETECTABLE-WARNING SURFACE

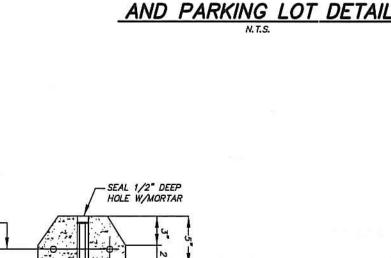
LIP HEIGHT-

1. ALL REINFORCING SHALL BE SUPPORTED ON CHAIRS OR OTHER POSITIVE TYPE SUPPORTS APPROXIMATELY ONE PER 25 SQ. FT. 2. CONCRETE SHALL BE CLASS "F", 4400 PSI. 3. AIR ENTRAINMENT SHALL BE BETWEEN 6 - 7%

REINFORCED CONCRETE DRIVEWAY ENTRANCE

CONCRETE SIDEWALK WITH PLANTING STRIP IN CITY R.O.W.

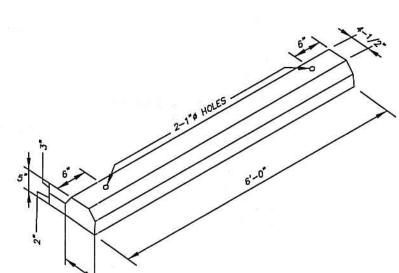
CONCRETE CURB DETAIL


NOTES:

1. ALL CURBING TO BE CAST—IN—PLACE WITHIN CITY RIGHT—OF—WAY.

2. APPROVED 1/2" PREFORMED EXPANSION JOINT FILLER SHALL BE PLACED
AT A MAXIMUM SPACING OF 10 FEET COINCIDING WITH EXPANSION JOINTS

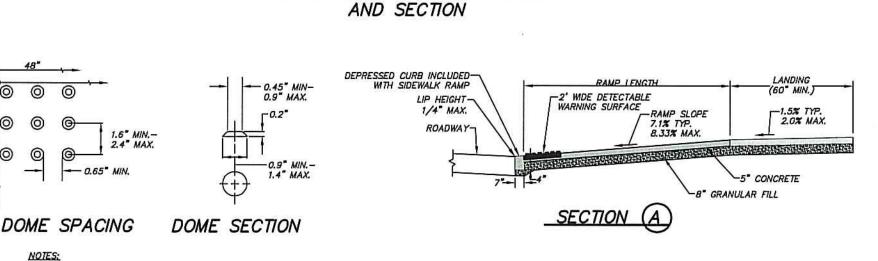
CONCRETE


-3/4" CRUSHED STONE

SECTION

2-#3 REBARS — LONG

PAVEMENT



D'ANDREA SURVEYING & ENGINEERING, P.C.

 LAND PLANNERS ENGINEERS

6 NEIL LANE TEL. 637—1779

PRECAST CONCRETE CURB STOP DETAIL

1. MAXIMUM SLOPES OF ADJOINING GUTTERS AND ROAD SURFACES IMMEDIATELY ADJACENT TO THE SIDEWALK RAMP OR ACCESSIBLE ROUTE SHOULD NOT EXCEED 20:1.
2. CARE SHALL BE TAKEN TO ASSURE UNIFORM GRADE ON THE RAMP, FREE OF SAGS AND ABRUPT GRADE CHANGES.
3. ALL RAMPS SHALL BE CONSTRUCTED OF CLASS "F" CONCRETE IN ACCORDANCE WITH CONNECTICUT STANDARD SPECIFICATIONS ARTICLE M.O.J.OI.
4. SIDEWALK RAMPS SHALL HAVE A COARSE BROOM FINISH TRANSVERSE TO THE SLOPE OF THE RAMP. THE SURFACE ALONG ACCESSIBLE ROUTES SHALL BE STABLE, FIRM AND SLIP RESISTANT IN COMPLIANCE WITH ADAG SECTION 4.5.
5. DIAGONAL SIDEWALK RAMPS AT MARKED CROSSINGS SHALL BE WHOLLY CONTAINED WITHIN THE MARKINGS, EXCLUDING ANY FLARED SIDES.
6. REMOVAL OF EXISTING SIDEWALK FOR NEW RAMP INSTALLATIONS SHALL BE TO THE NEAREST EXPANSION/CONTRACTION JOINT OR DUMMY JOINT, 12:1 MAY NOT BE ACHIEVABLE DUE TO SIDEWALK GRADE. IN RECOGNITION OF THIS, A MINIMUM LIMIT OF 15' FOR A PARALLEL RAMP SHALL BE INCLUDED IN THE COST OF "CONCRETE SIDEWALK". SIDEWALK".

7. EXPANSION JOINTS IN CONCRETE SHALL MATCH THOSE IN ADJACENT SIDEWALKS BUT IN NO CASE SHALL THE SPACING BETWEEN EXPANSION JOINTS EXCEED 12'

PERPENDICULAR SIDEWALK RAMP

7. EXPANSION JOINTS IN CONCRETE SHALL MATCH THOSE IN ADJACENT SIDEWALKS BUT IN NO CASE SHALL THE SPACING BETWEEN EXPANSION JOINTS EXCLED 12 UNLESS OTHERWISE NOTED.

8. RAISED ISLANDS IN MARKED CROSSINGS SHALL HAVE SIDEWALK RAMPS AT BOTH SIDES AND A LEVEL AREA AT LEAST 4' LONG BETWEEN THE RAMPS. IF THIS CANNOT BE ACHIEVED, THE RAISED ISLAND SHALL BE CUT THROUGH LEVEL WITH THE ROADWAY AS SHOWN ON THE PLANS OR AS DIRECTED BY THE ENGINEER.

9. SIDEWALK RAMPS SHALL BE CONSTRUCTED AND PAID FOR UNDER THE ITEM "CONCRETE SIDEWALK" INCLUDING CURBING WITHIN THE LIMITS OF THE NEW SIDEWALK RAMP AND DETECTABLE WARNING STRIPS.

10. CURBING WITHIN THE LIMITS OF NEW SIDEWALK RAMP SHALL BE CONSTRUCTED IN CONFORMANCE WITH THE REQUIREMENTS OF FORM 817 SECTIONS 8.11 AND 8.13.

11. HANDICAP RAMPS CONFORMING WITH CONNECTICUT GENERAL STATUTES, SEC. 7—118A, SHALL BE INCORPORATED IN ALL PROPOSED SIDEWALKS AT ALL STREET INTERSECTIONS, AND AT ALL OTHER LOCATIONS WHERE THE GRADE OF A DRIVEWAY OR OTHER FACILITY TAKES PRECEDENCE OVER THE GRADE OF THE PROPOSED CINEWALK.

12. TRANSITION TO FULL HEIGHT CURB. INSTALL STONE CURBING IF ADJACENT CURBING IS STONE. INSTALL CONCRETE CURBING IF ADJACENT CURBING IS CONCRETE

OR BITUMINOUS.

13. INSTALL THE EDGE OF THE DETECTABLE WARNING 6" FROM THE EDGE OF ROAD.

14. TO PERMIT WHEELCHAIR WHEELS TO ROLL BETWEEN DOMES, ALIGN DOMES ON A SQUARE GRID IN THE DIRECTION OF PEDESTRIAN TRAVEL.

DETAILS FOR PEDESTRIAN ACCESS RAMPS

375 Fairfield Avenue

Stamford, Connecticut TP-1 to TP-7 were conducted by Rocco V. D'Andrea, Inc.,

on June 29, 2023.	
TP-1	0"
Proccessed Aggregate	e"
Brown Silty Sand	15"_
Silty Sand w/ Cobbles / Weathered Rock 78"========	,5
78"=========	42"=
No Mottling No GW	

Restrictive @ 78"

Proccessed Aggregate _____ Brown Silty Sand -----Silty Sand w/ Cobbles / Weathered Rock ----------No Mottling No GW Ledge @ 42" Ledge @ 78"

Restrictive @ 40"

0"-----Proccessed Aggregate 10"----Brown Silty Sand ------Brown Silty Sand w/ Cobbles 60"-----Silty Sand w/ Cobbles / Weathered Rock

70"=========

No Mottling

Ledge @ 68"

Restrictive @ 68"

No GW

Proccessed Aggregate 10"-----Fill/Silty Sand w/ Bricks Construction Debris/ Wood

52"=========

Old Concrete Slab

10"-----Grey Gravel Fill 22"----Brown Silty Sand

No Ledge

No Mottling

GW @ 118"

Restrictive @ 118"

Proccessed Aggregate Silty Sand w/ Grey Silt 42"-----Brown Silty Sand w/ Grey Silt Clumps 122"=========

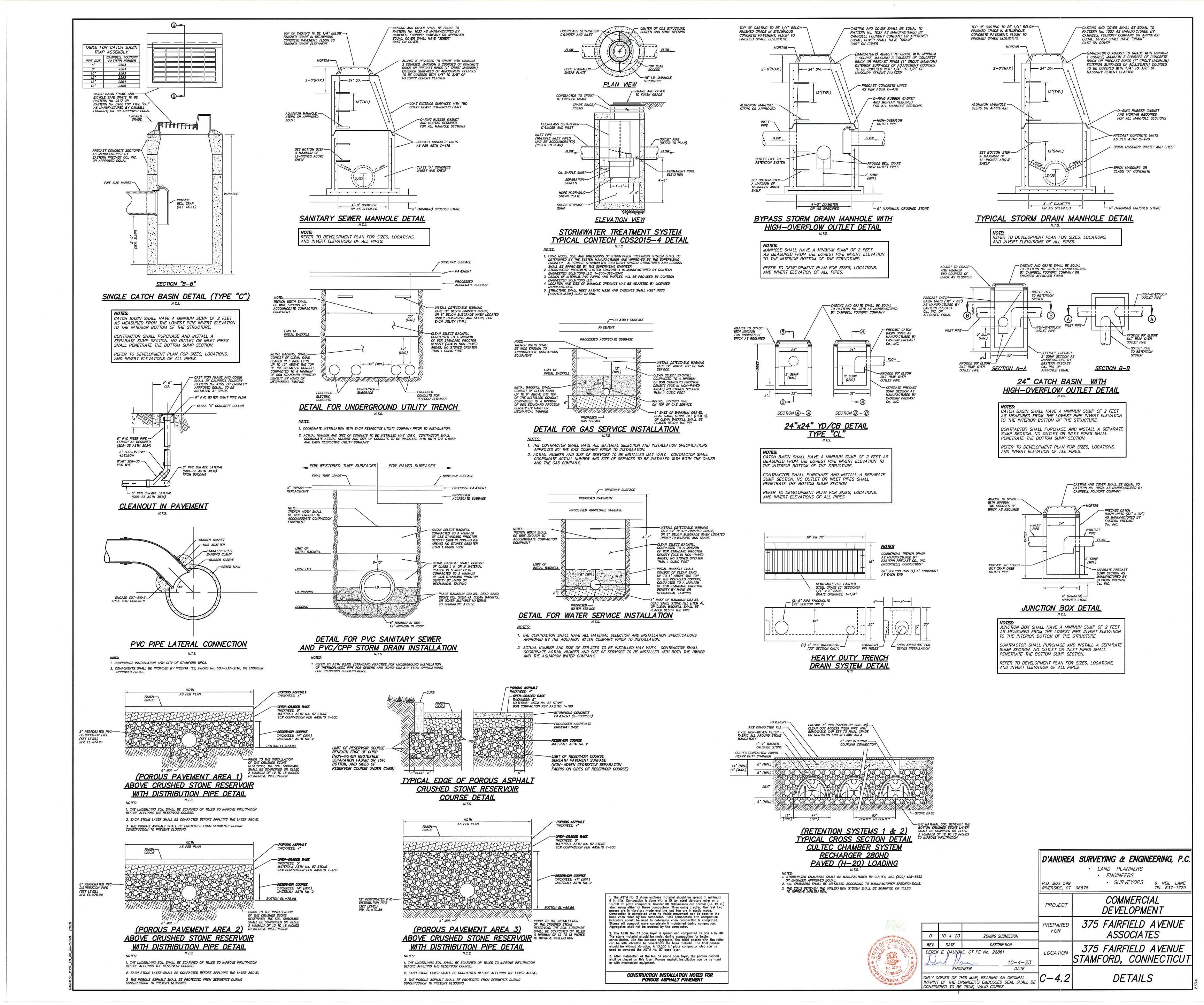
w/ Cobbles

0"-----Proccessed Aggregate 10"-----Tan Brown Silty Sand 65"-----Silty Sand & Weathered Rock

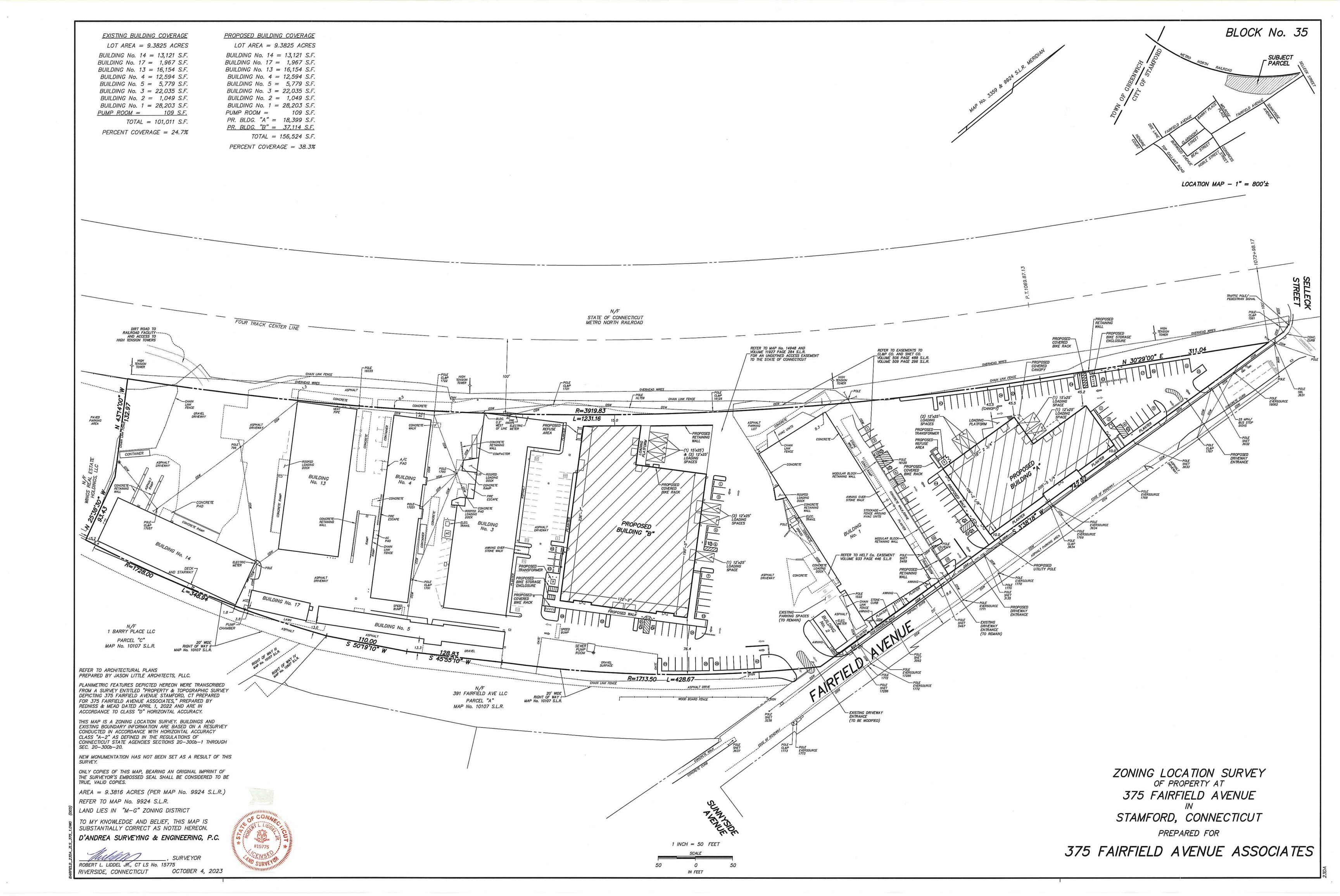
78"========

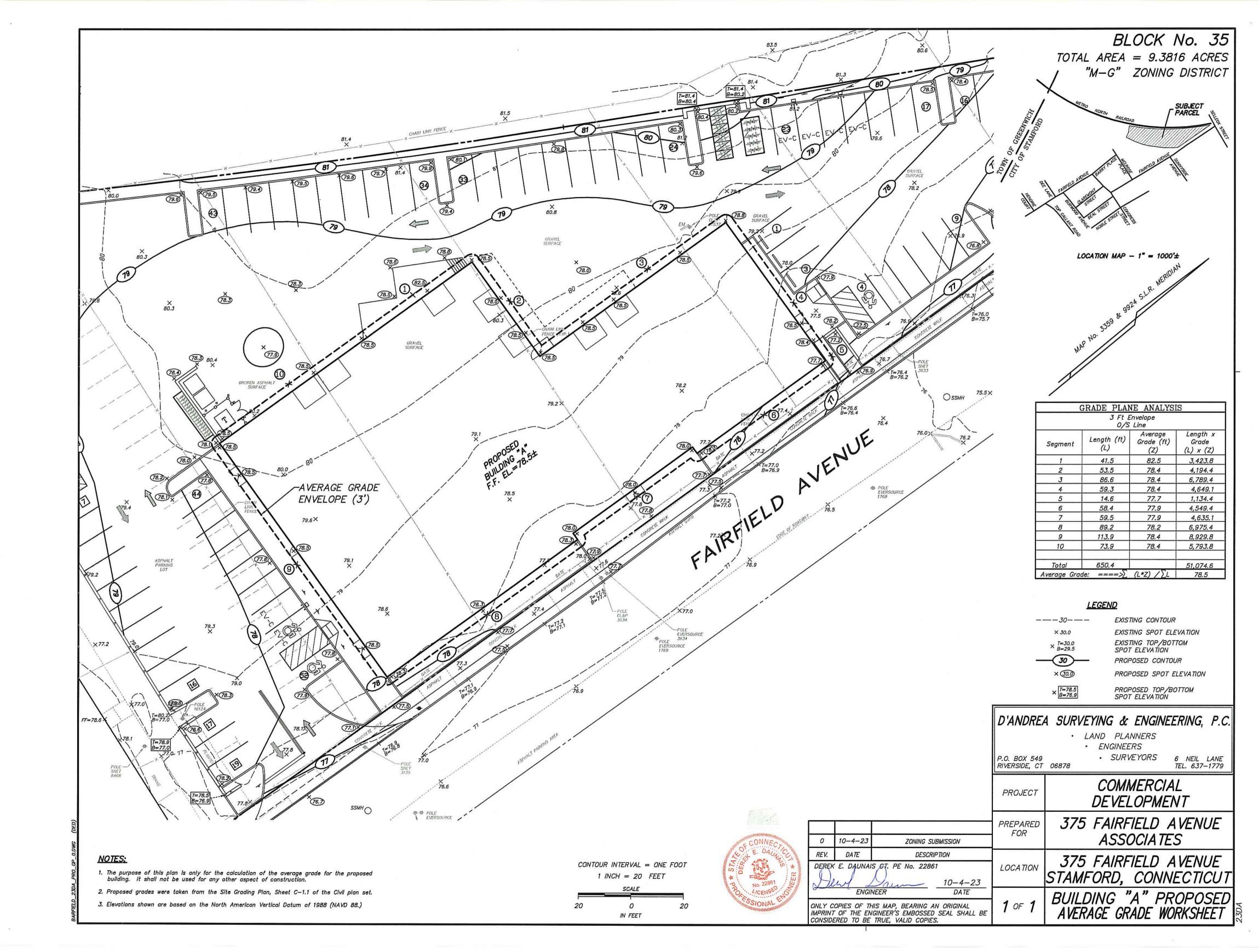
Restrictive @ 65"

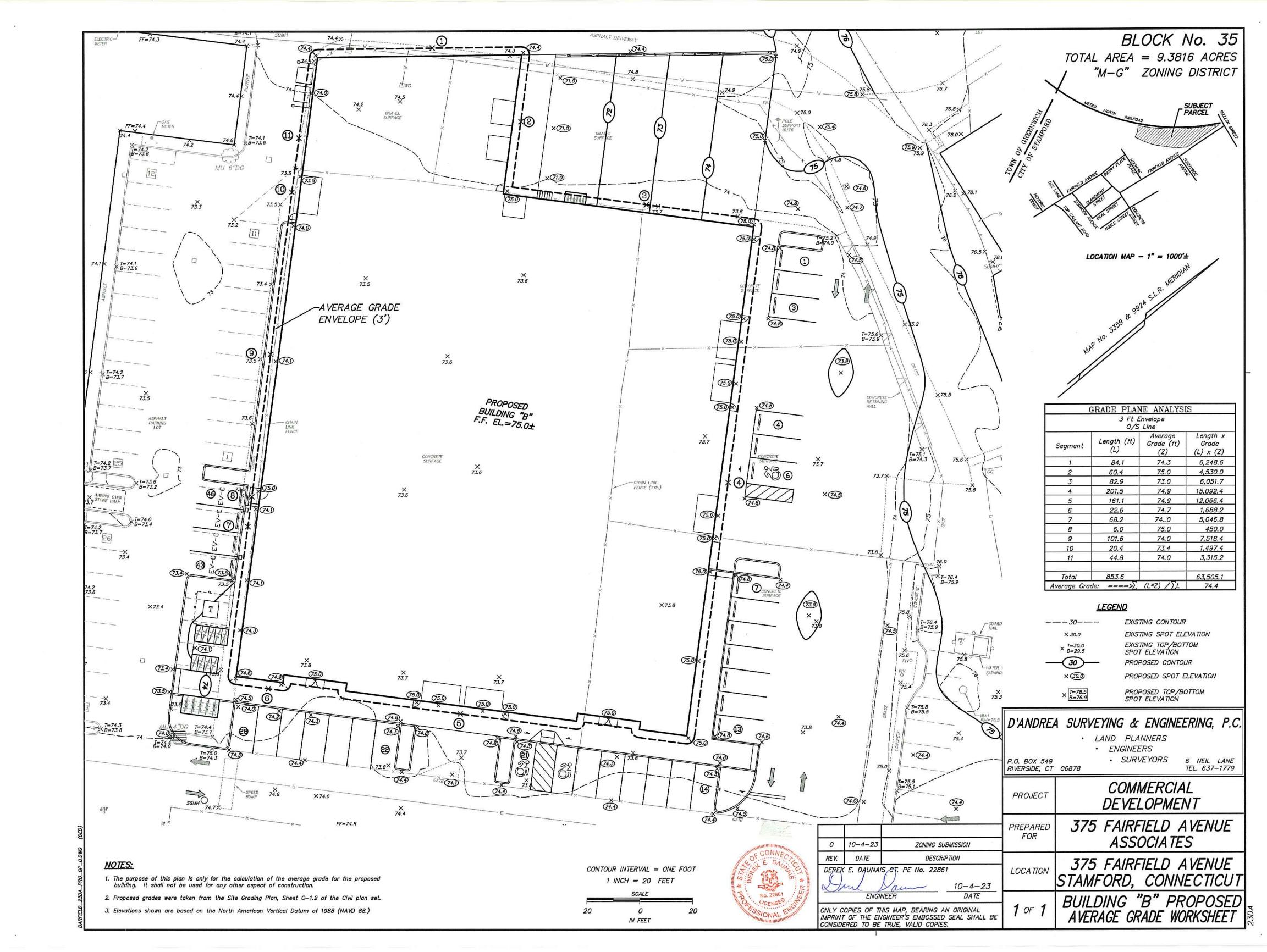
No Mottling

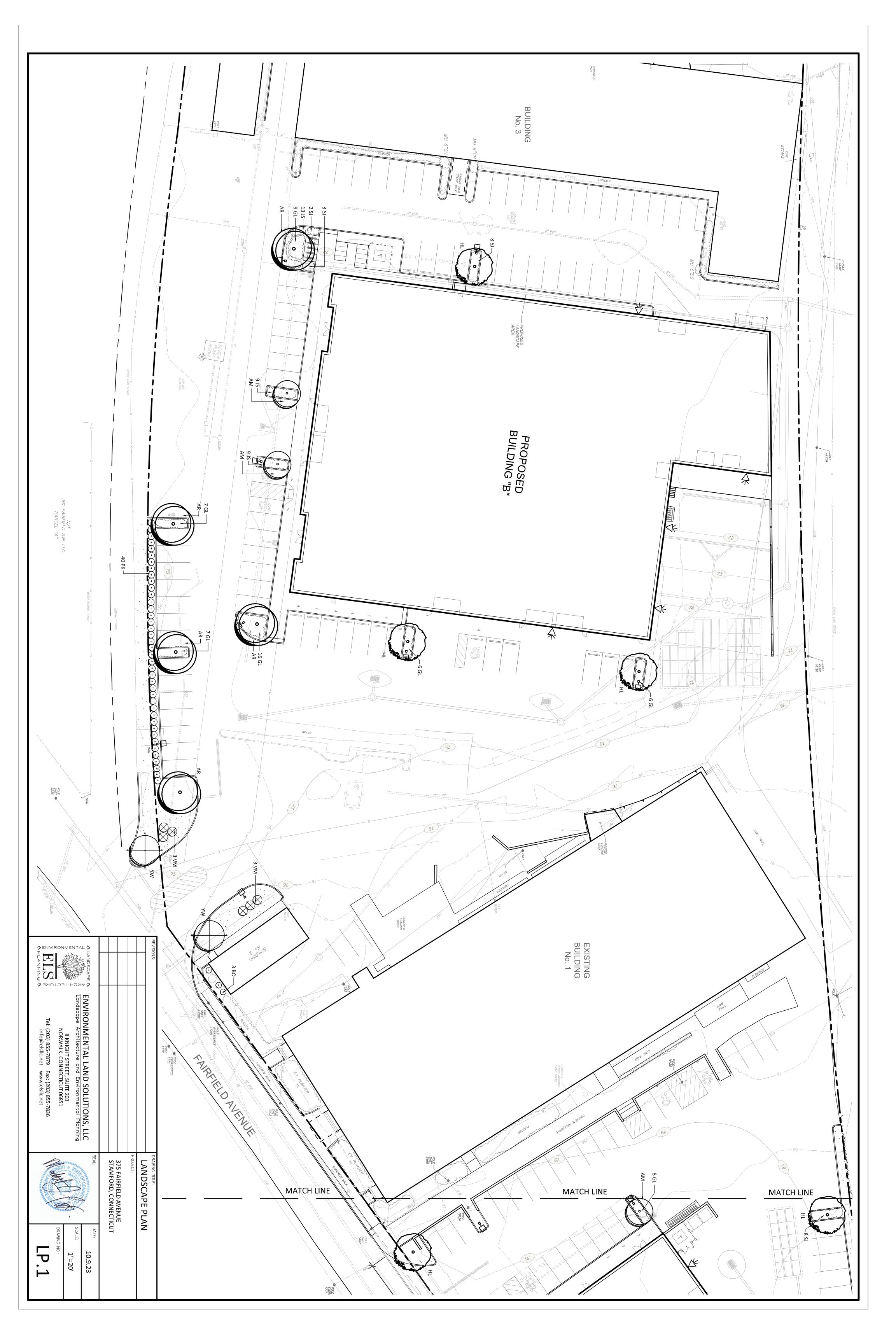

Ledge @ 78"

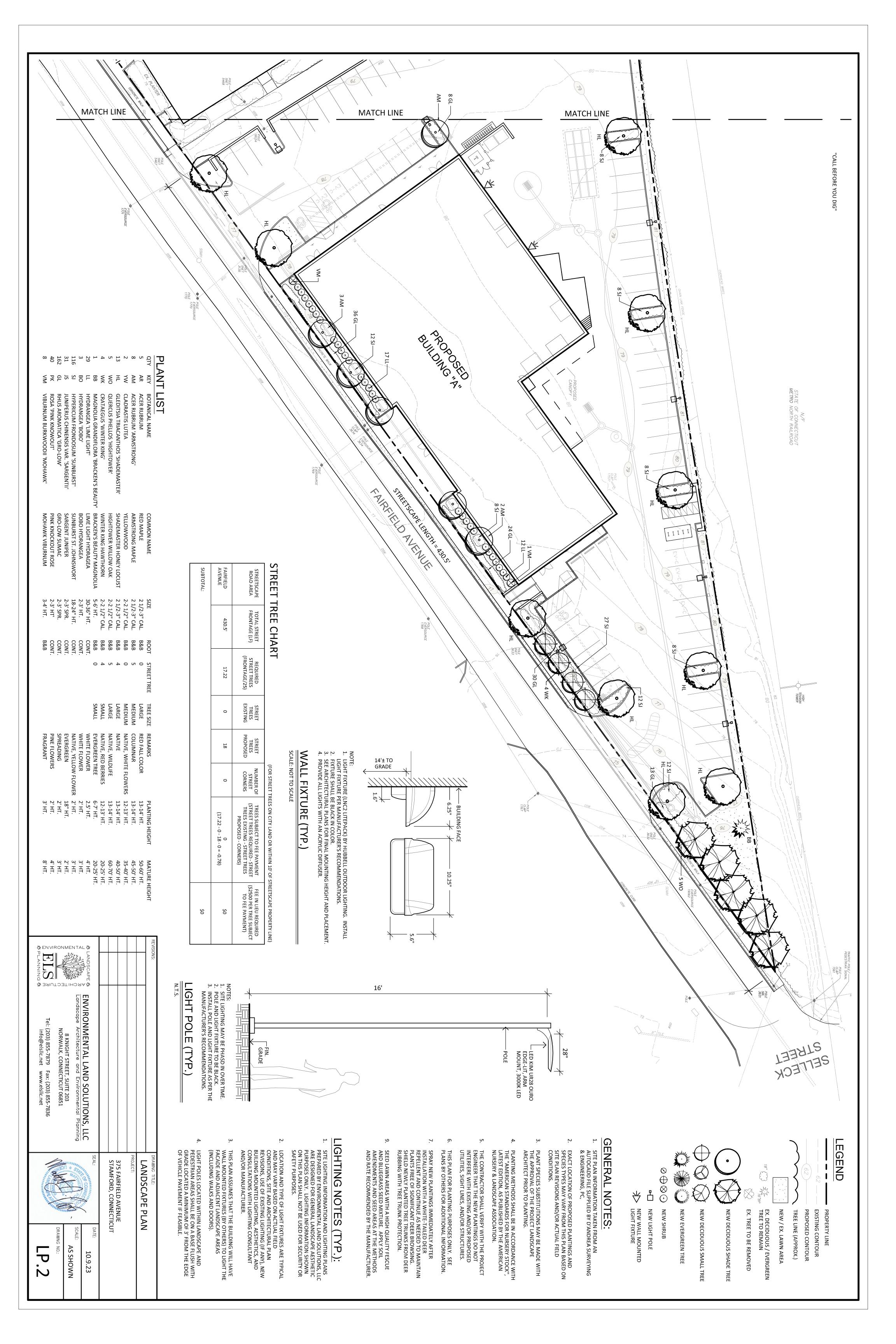
No GW


0"----Proccessed Aggregate 4"-----Construction Debris Fill (Concrete, Bricks, Metal, Etc.) 30"-----Old Concrete Slab 30"========


 SURVEYORS P.O. BOX 549 RIVERSIDE, CT 06878 COMMERCIAL PROJECT DEVELOPMENT 375 FAIRFIELD AVENUE **ASSOCIATES** 0 10-4-23 ZONING SUBMISSION REV. DATE DESCRIPTION 375 FAIRFIELD AVENUE DEREK E. DAUNAIS, CT PE No. 22861 STAMFORD, CONNECTICUT 10-4-23 DATE ENGINEER NOTES AND DETAILS ONLY COPIES OF THIS MAP, BEARING AN ORIGINAL IMPRINT OF THE ENGINEER'S EMBOSSED SEAL SHALL BE


CONSIDERED TO BE TRUE, VALID COPIES.




BLOCK No. 35 NOTES: The purpose of this plan is only to highlight the Low Impact Development portions of the project, as per City requirements. This plan shall not be used for any other TOTAL AREA = 9.3816 ACRES "M-G" ZONING DISTRICT 2. Elevations shown are based on the North American Vertical Datum of 1988 (NAVD 88). 3. Refer to Sheets C-1.1 through C-2.2 for a detailed depiction of the proposed site development and storm drainage improvements. 4. Refer to Sheet C-4.1 for test pit data. PARCEL HYDROLOGIC SOIL GROUP SUMMARY THE PROPERTY IS COMPOSED OF URBAN LAND (HSG-D) SOIL INFORMATION TAKEN FROM THE NATURAL RESOURCES CONSERVATION SERVICE (NRCS). TOTAL SITE AREA 408,703 SQ.FT. 170,240 SQ.FT. DISTURBED AREA PRE-DEVELOPMENT 396,183 SQ.FT. IMPERVIOUS AREA POST-DEVELOPMENT 388,070 SQ.FT. IMPERVIOUS AREA LOCATION MAP - 1" = 800'± REQUIRED 1/2 WQV* 5,586.3 CUBIC FEET PROVIDED RET. VOL. 7,161 CUBIC FEET * The required 1/2 WQV has been calculated for the proposed development drainage areas being collected by the proposed stormwater retention/infiltration systems (DA's 1B, 1D, 1E, 2B-1, & 2B-2). DRAINAGE AREA 1F DRAINAGE AREA 1E TOTAL AREA = 5,125 S.F.TOTAL AREA = 6,714 S.F. IMPERVIOUS AREA = 4,208 S.F. IMPERVIOUS AREA = 6,417 S.F. COLLECTED AND PIPED TO COLLECTED AND PIPED PROPOSED WATER QUALITY ----STORMWATER TREATMENT SYSTEM #1" - PROPOSED "1/2 WQV" TO RETENTION SYSTEM (PP-1) FLOW "WQF" STORMWATER WQF = 0.09 CFSRETENTION/INFILTRATION TREATMENT SYSTEM #1 FOR DRAINAGE AREA 2B-2 1/2 WQV = 254.7 C.F.SYSTEM (RS-1) (STRUCTURAL BMP) 15-CULTEC RECHÁRGER DRAINAGE AREA 2B-2-280HD UNTS -PROPOSED "1/2 WQV" N/F TOTAL AREA = 87,935 S.F.(STORAGE VOLUME = 976 C.F.) RETENTION / INFILTRATION STATE OF CONNECTICUT METRO NORTH RAILROAD IMPERVIOUS AREA = 85,078 S.F. SYSTEM (RS-2) COLLECTED AND PIPED TO (STRUCTURAL BMP) STORMWATER TREATMENT SYSTEM #4 54-CULTEC RECHÁRGER AND RETENTION SYSTEM (RS-2) 280HD UNTS WQF = 1.92 CFS(STORAGE VOLUME = 3,415 C.F.) 1/2 WQV = 3,375.3 C.F. CONTRACT CON -PROPOSED WATER QUALITY FLOW "WQF" STORMWATER
TREATMENT SYSTEM #1 FOR
DRAINAGE AREA 1F PROPOSED "1/2 WQV"
RETENTION/INFILTRATION SYSTEM (PP-1) (STRUCTURAL BMP) POROUS PAVEMENT SYSTEM (STORAGE VOLUME = 305 C.F.) - PROPOSED WATER QUALITY FLOW "WQF" STORMWATER
TREATMENT SYSTEM #2 FOR
DRAINAGE AREA 1C PROPOSED BUILDING "B" F.F. EL.=75.0± - DRAINAGE AREA 1C TOTAL AREA = 11,957 S.F. IMPERVIOUS AREA = 11,376 S.F. 63 COLLECTED AND PIPED TO STORMWATER TREATMENT SYSTEM #2 WQF = 0.26 CFSFLOW "WQF" STORMWATER
TREATMENT SYSTEM #1 FOR DRAINAGE AREA 1B - DRAINAGE AREA 1B TOTAL AREA = 24,237 S.F. IMPERVIOUS AREA = 23,373 S.F. COLLECTED AND PIPED TO STORMWATER TREATMENT SYSTEM #3 Policy V AND RETENTION SYSTEM (RS-1) WQF = 0.53 CFS -PROPOSED "1/2 WQV" RETENTION /INFILTRATION 1/2 WQV = 911.7 C.F.SYSTEM (PP-2) (STRUCTURAL BMP)
POROUS PAVEMENT SYSTEM (STORAGE VOLUME = 441 C.F.) - DRAINAGE AREA 1D TOTAL AREA = 10,615 S.F. IMPERVIOUS AREA = 10,442 S.F. COLLECTED AND PIPED TO RETENTION SYSTEM (PP-2) PROPOSED "1/2 WQV" — RETENTION/INFILTRATION 1/2 WQV = 412.2 C.F. SYSTEM (PP-3) (STRUCTURAL BMP) POROUS PAVEMENT SYSTEM N/F 391 FAIRFIELD AVE LLC (STORAGE VOLUME = 2,024 C.F.) PARCEL "A" DRAINAGE AREA 2B-1
TOTAL AREA = 16,104 S.F.
IMPERVIOUS AREA = 15,570 S.F.
COLLECTED AND PIPED TO RETENTION SYSTEM (PP-3) 1/2 WQV = 617.5 C.F.7, D'ANDREA SURVEYING & ENGINEERING, P.C. LAND PLANNERS ENGINEERS • SURVEYORS 6 NEIL LANE TEL. 637-1779 P.O. BOX 549 RIVERSIDE, CT 06878 COMMERCIAL DEVELOPMENT 375 FAIRFIELD AVENUE PREPARED **ASSOCIATES** 0 10-4-23 ZONING SUBMISSION REV. DATE 375 FAIRFIELD AVENUE DEREK E. DAUNAIS, CT PE No. 22861 STAMFORD, CONNECTICUT 1 INCH = 40 FEET 10-4-23 DATE ENGINEER LOW IMPACT ONLY COPIES OF THIS MAP, BEARING AN ORIGINAL IMPRINT OF THE ENGINEER'S EMBOSSED SEAL SHALL BE CONSIDERED TO BE TRUE, VALID COPIES. DEVELOPMENT PLAN IN FEET

DRAINAGE SUMMARY REPORT

FOR "COMMERCIAL DEVELOPMENT"

LOCATED AT
375 FAIRFIELD AVENUE
STAMFORD, CONNECTICUT

PREPARED FOR 375 FAIRFIELD AVENUE ASSOCIATES

October 4, 2023

Derek E. Daunais, PE CT License No. 22861

23DA_DSR_0

Applicant / Site Information:

Applicant: 375 Fairfield Avenue Associates

Jeff Goldblum

375 Fairfield Avenue, Stamford, CT 06902

(203) 967-8367

jeff@swcoffice.com

Engineer: D'Andrea Surveying & Engineering, PC

Derek E. Daunais, PE

6 Neil Lane Riverside, CT 06878

(203) 637-1779

derek@rvdi.com

Site Information:

375 Fairfield Avenue

Block 35, Tax Account #001-3193

Existing / Proposed Zone: M-G Zoning District

Existing / Proposed Use: Commercial

Table of Contents

Introduction	1
Existing Conditions	2
Proposed Conditions	2
Narrative of Impacts to State Drainage Facilities	4
Conclusion	5
Existing Conditions – Watershed Map	Exhibit A
Proposed Conditions – Watershed Map	Exhibit B
NRCS Soil Map & Hydrologic Soil Group Rating	Exhibit C
FIRM Map	Exhibit D
Site Vicinity Map	Exhibit E
USGS Topographic Quad Map	Exhibit F
Rainfall Depths and Intensity	Exhibit G
Stormwater Calculations	Appendix A
HydroCAD Summary Table – Existing & Proposed Conditions	Appendix B
HydroCAD Analysis – Existing Conditions	Appendix C
HydroCAD Analysis – Proposed Conditions	Appendix D
DCIA Worksheet	Appendix E

Introduction:

The Owner of the property located at 375 Fairfield Avenue in Stamford, Connecticut, is proposing to construct two new commercial buildings along with associated improvements at the already developed site. The purpose of this report is to summarize the proposed stormwater treatment improvements for the site as part of the proposed commercial redevelopment. The property is located along the western side of Fairfield Avenue, just south of the intersection with Selleck Street. The property is bordered by Metro-North railroad to the west, Fairfield Avenue to the east, and commercial properties to the south and southeast. It is located in the M-G zoning district and has a total area of 9.3816 acres. The property is located outside all Flood Hazard Areas (refer to Exhibit D).

The property currently contains seven other existing commercial buildings. These building will remain in operation and will not be removed. The construction of the two new buildings will take place in areas that are currently used as surface parking. The total area of land disturbance for the proposed project will be approximately 3.9 acres or 41.5% of the property. The remaining 58.5% of the property will remain the same as under existing conditions.

The proposed improvements will include the removal of the hardscape/compacted gravel surfaces within the limits of disturbance, the construction of two new commercial buildings (Buildings "A" and "B"), the construction of new bituminous concrete driveways and parking lot areas with curbing, retaining walls, sidewalks, the installation of a stormwater collection, retention and conveyance system, installation of various underground utilities, and the implementation of a planting plan. There are currently nine existing driveway entrances to the site. The proposed improvements will eliminate five of these entrances and modify four of them, so there will be a total of only four driveway entrances to the property after construction has been completed. Refer to the Site Plan Review Set, prepared by D'Andrea Surveying & Engineering, P.C. for a depiction of existing conditions and the proposed site improvements.

The proposed development will decrease the total amount of impervious coverage from 396,183 square feet (S.F.) (or 96.9%) to 388,070 S.F. (or 95.0%), which is a decrease of approximately 8,113 S.F. or (1.9%), as compared to existing conditions. Existing compacted gravel parking area surfaces have been considered as impervious surfaces for the purpose of this total impervious coverage comparison. A proposed storm drainage system, including catch basins with deep sumps and traps, cyclonic hydrodynamic oil/grit removal treatment systems, porous pavement systems, and subsurface retention/infiltration systems, will be installed to treat Water Quality Flow (WQF), infiltrate a minimum of the half Water Quality Flow (WQF), and reduce both peak flow discharge rates and runoff volume to off-site areas, as compared to existing conditions. There are currently no stormwater retention or infiltration treatment measures on the site within the areas of proposed development. Drainage patterns and discharge points will be similar as under existing conditions.

The on-site watershed drainage basins for existing and proposed conditions were modeled using HydroCAD 10.0 developed by HydroCAD Software Solutions LLC. The software was used

to generate peak stormwater runoff flow rates for the 1-year to 100-year storm events, using the National Resources Conservation Services (NRCS) method.

Existing Conditions:

Currently, the entire property supports seven commercial buildings. The majority of the remainder of the property consists of either paved or compacted gravel driveway and parking area surfaces with very little vegetated areas and very few trees. The entire property has been previously developed and there are no natural areas remaining. The area designated for the development of proposed Building "A" currently consists of a mixture of compacted gravel and paved parking areas. The area designated for the development of proposed Building "B" currently consists of a large concrete slab surrounded by paved driveway/parking areas. The concrete slab is what remains of a foundation slab from a previously existing building that was removed many years ago. This concrete slab is currently used as a parking area.

Stormwater runoff from the entire site flows to different Points of Concern (POC). The stormwater runoff from Drainage Area 1 (DA-1) flows overland toward Fairfield Avenue where it is collected by street catch basins and discharged into the City of Stamford storm drainage system, POC-A. The stormwater runoff from DA-2A, DA-2B, DA-2C, DA-2D, and DA-2E is collected by the existing on-site storm drainage system and pipe discharged onto the Metro-North property to the west, POC-B. DA-3 consists of existing Building #1. The stormwater runoff from this building is piped to an unknown location, POC-F. The stormwater runoff from the southern end of the property, DA-4, flows onto the adjoining property to the east, POC-C. DA-5A consists of the existing Building #13. The stormwater runoff from this building is piped into an existing on-site infiltration drywell, POC-D. The stormwater runoff from DA-5B is also piped into another existing on-site infiltration drywell, POC-E. Refer to Exhibit "A" for a depiction of existing conditions stormwater runoff flow patterns and watershed areas.

Proposed Conditions:

Under proposed conditions, drainage patterns and discharge points will be similar as under existing conditions. However, new storm drainage treatment and retention facilities have been proposed to help control and treat stormwater runoff before it is discharged off-site. The proposed drainage analysis includes the division of the property into multiple sub-watershed areas discharging to the same points of concern as under existing conditions. Refer to Exhibit "B" for a depiction of proposed conditions stormwater runoff flow patterns and watershed areas.

Drainage Areas 2D, 2E, 3, 4, 5A, and 5B will not be impacted by the proposed development and neither will the stormwater runoff flow or volume to points of concern C, D, and E. These drainage areas will remain the same as under existing conditions. Only existing drainage areas, DA-1, DA-2A, DA-2B, and DA-2C will be impacted by the proposed development and therefore they have been renumbered and remodeled to accommodate the proposed development improvements.

Proposed drainage areas DA-1A through DA-1F are associated with the development of proposed Building "A". Stormwater runoff from DA-1A will flow overland onto Fairfield Avenue where it will be collected by existing street catch basins and discharged into the City of Stamford storm drainage system, POC-A, similar as under existing conditions. The stormwater runoff from DA-1D and DA-1E will be collected by proposed porous pavement parking areas (PP-1 & PP-2). Theses systems have been sized to both retain and infiltrate a minimum of the one-half water quality volume for their associated watershed areas. The overflow from these systems will be piped to the City storm drainage system in Fairfield Avenue, POC-A. The stormwater runoff from DA-1B will be collected by the proposed storm drainage system and first routed through a hydrodynamic oil/grit separator stormwater treatment system and then discharged into a subsurface retention/infiltration system (RS-1). This subsurface retention/infiltration system has been designed to retain a minimum of the one-half water quality volume from its contributing watershed area. The overflow from this system will be piped to the City storm drainage system in Fairfield Avenue, POC-A. Due to restrictive soil conditions the one-half water quality volume stormwater runoff from DA-1C and DA-1F cannot be retained and infiltrated. Instead, the stormwater runoff from these two areas will be treated through the use of a hydrodynamic oil/grit separator stormwater treatment systems prior to being discharged into the City storm drainage system in Fairfield Avenue, POC-A.

Proposed drainage areas DA-2A, DA-2B-1, DA-2B-2, and DA-2C are associated with the development of proposed Building "B". Stormwater runoff from DA-2A will be collected by a new replacement driveway catch basin prior to being piped to the Metro-North property, POC-B. This drainage area will have similar surface conditions as under existing conditions and therefore water quality volume infiltration is not warranted. However, the new catch basin will contain both a deep sump and silt trap, which will assist in stormwater runoff pretreatment and will be an improvement over existing conditions. The stormwater runoff from DA-2B-1 will be collected by a proposed porous pavement parking area (PP-3). This system has been sized to both retain and infiltrate a minimum of the one-half water quality volume for its associated watershed area. The overflow from this system will be piped to the Metro-North property, POC-B. The stormwater runoff from DA-2B-2 will be collected by the proposed storm drainage system and first routed through a hydrodynamic oil/grit separator stormwater treatment system and then discharged into a subsurface retention/infiltration system (RS-2). This subsurface retention/infiltration system has been designed to retain a minimum of the one-half water quality volume from its contributing watershed area. The overflow from this system will be piped to the Metro-North property, POC-B. DA-2C will consist mostly of the existing parking lot located to the southwest of proposed Building "B". The stormwater runoff from DA-2C will continue to be collected by the existing parking lot storm drainage system and piped to the Metro-North property, POC-B, in a similar manner as under existing conditions.

Refer to Appendix "A" for half water quality volume calculations and retention system/porous pavement stage-storage data. The proposed cyclonic hydrodynamic oil/grit removal treatment systems will be designed to treat a minimum of the water quality flow rate from their contributing watershed areas. Refer to Appendix "A" for water quality flow rate calculations.

All proposed catch basins will be equipped with deep sumps and hooded traps over the outlet pipes, which will be used to pretreat the stormwater runoff prior to discharge downstream.

The bottoms of the proposed subsurface retention/infiltration systems have been designed to be set a minimum of 1-foot above any underlying restrictive layer in accordance with the City of Stamford Drainage Manual standards. The Soil Survey of Fairfield County, Connecticut, as developed by the United States Department of Agriculture (USDA) and the Soil Conservation Service (SCS) classifies the majority of the on-site soil group as Urban Land with a hydrologic soil group rating of D. Refer to Exhibit "C" for the NRCS soil delineation map and hydrologic soil group rating. However, on-site test pits were performed, which have characterized the soils as predominately silty sand, which generally have good infiltration characteristics. Due to the existing uses of the property and the presence of existing concrete slabs, test pits were currently unable to be performed in all of the proposed porous pavement and subsurface retention system locations. Therefore, additional deep test pits and hydraulic conductivity tests will be performed in the areas of the proposed retention systems prior to the issuance of a building permit to verify the infiltration rates of the existing soils and if any restrictive soil conditions are present. If any design changes are required due to the results of this additional soil testing, both the results of the additional soil testing and the revised storm drainage design will be submitted to the City Engineering Bureau for review prior to the issuance of a building permit.

Based on the HydroCAD model, both the volume and peak rate of stormwater runoff exiting the site will be decreased for all storm events to POC A and B. Refer to Appendix "B" for a summary and comparison of the peak flow and volume discharge from the subject property for both existing and proposed conditions. In addition to reducing the peak flows, infiltrating one-half the Water Quality Volume and treating the Water Quality Flow from the proposed improvements will help pretreat stormwater runoff from the proposed asphalt parking lot areas and building roofs prior to discharging downstream.

During the construction phase of the project, pretreatment of stormwater runoff will be provided by the use of temporary soil and erosion controls as outlined on the "Sedimentation and Erosion Control Plan," prepared by D'Andrea Surveying & Engineering, P.C. This includes the stockpiling of excess materials for control of sediment and periodic on-site inspections to ensure that the development of the site remains "tight" and stable throughout the construction phase.

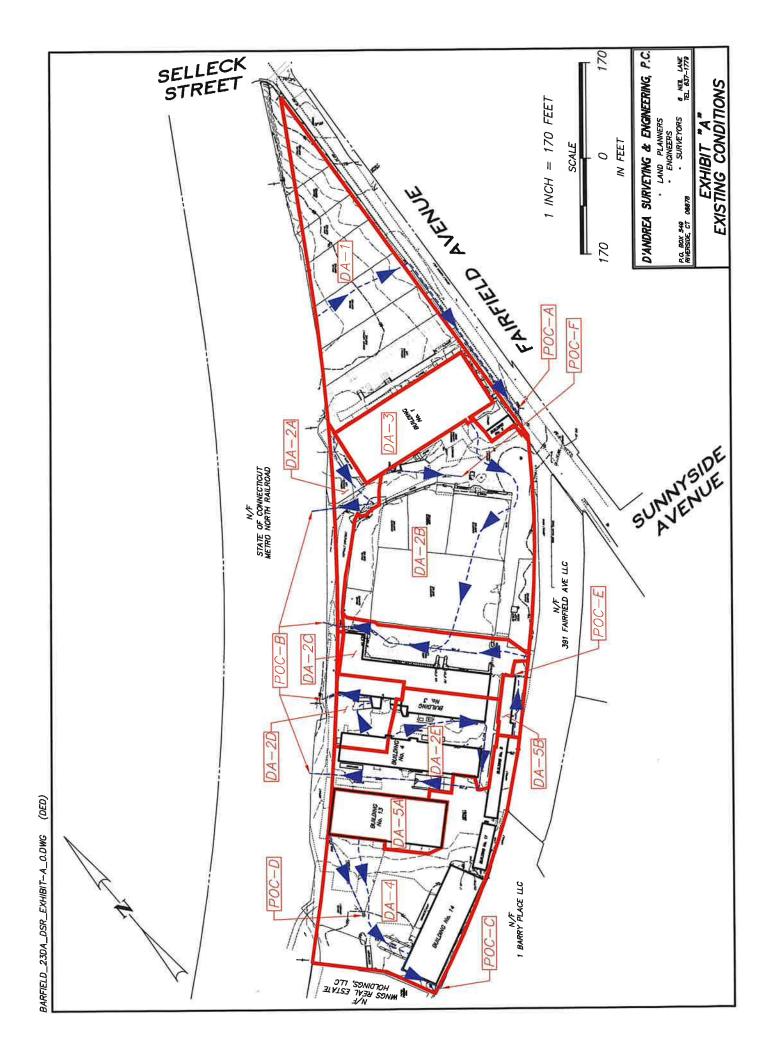
Narrative of Impacts to State Drainage Facilities

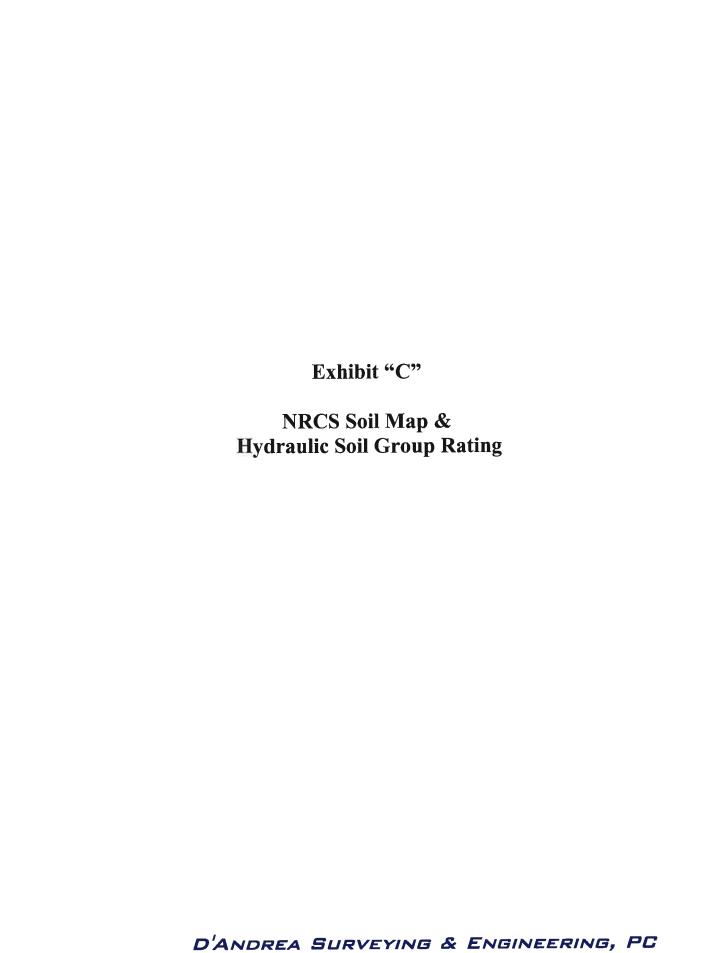
The Metro-North railroad right-of-way lies adjacent to the western property line of the proposed development. There are no new proposed direct stormwater runoff connections from the proposed development to the railroad right-of-way from any of the proposed building or driveway improvements. There are currently four existing storm drainage pipes that discharge stormwater runoff from the subject property onto the Metro-North property. These existing drainage pipes will remain in use under proposed conditions.

Under existing conditions, the stormwater runoff from the subject property that is discharged onto the railroad right-of-way is untreated. Under proposed conditions, the stormwater

runoff from the area of proposed development on the subject property will first be treated through water quality measures, such as porous pavement areas, subsurface retention/infiltration systems, and cyclonic hydrodynamic oil/grit removal treatment systems. These proposed stormwater treatment measures plus the overall reduction in the peak rate of runoff and volume will result in an overall improvement, as compared to existing conditions. Therefore, there will be no adverse impacts to any existing storm drainage systems that may lie within the railroad right-of-way, as a result of the proposed development.

There is currently an undefined access easement over the subject property to the Metro-North property in favor of the State of Connecticut. An access route through the subject property will be provided and maintained throughout construction and under proposed conditions.


Conclusion


The proposed improvements will reduce the total amount of overall impervious surfaces on the subject property and have been designed to provide water quality treatment measures that will both mitigate stormwater runoff from the site and reduce runoff volumes and peak flow rates, as compared to existing conditions.

Based on the above information, the proposed improvements are designed in accordance with the City of Stamford Stormwater Drainage Manual and will not adversely impact adjacent or downstream properties or City-owned drainage facilities

Exhibits "A" & "B"

Watershed Maps **Existing & Proposed Conditions**

MAP LEGEND

Not rated or not available Streams and Canals Interstate Highways Major Roads Local Roads US Routes Rails 20 Water Features **Fransportation** O ŧ Not rated or not available Area of Interest (AOI) Soil Rating Polygons Area of Interest (AOI) Soil Rating Lines AD A

Background

Aerial Photography

۵

В

B/D

ပ

Not rated or not available

Soil Rating Points

4

ΑD

B/D

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil Enlargement of maps beyond the scale of mapping can cause line placement. The maps do not show the small areas of

Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service

Coordinate System: Web Mercator (EPSG:3857) Web Soil Survey URL:

distance and area. A projection that preserves area, such as the Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

State of Connecticut Soil Survey Area:

Survey Area Data: Version 22, Sep 12, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 21, 2022—Oct

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
307	Urban land	D	10.5	100.0%
Totals for Area of Inter	rest	3/	10.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition


Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Exhibit "D"
FIRM Map

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD HAZARD AREAS

With BFE or Depth zon as no An we are Without Base Flood Elevation (BFE)

Regulatory Floodway

0.2% Annual Chance Flood Hazard, Area depth less than one foot or with drainage of 1% annual chance flood with average

areas of less than one square mile 2000

Future Conditions 1% Annual

Area with Flood Risk due to Levee same Area with Reduced Flood Risk due to Chance Flood Hazard 2000 Levee, See Notes, 304

NO SCREEN Area of Minimal Flood Hazard Zone R

Effective LOMRs

Area of Undetermined Flood Hazard zone

OTHER AREAS GENERAL

Channel, Culvert, or Storm Sewer STRUCTURES ITTITIT Levee, Dike, or Floodwall Cross Sections with 1% Annual Chance Water Surface Elevation

Coastal Transect Base Flood Elevation Line (BFE)

Jurisdiction Boundary Limit of Study

Coastal Transect Baseline

Hydrographic Feature Profile Baseline

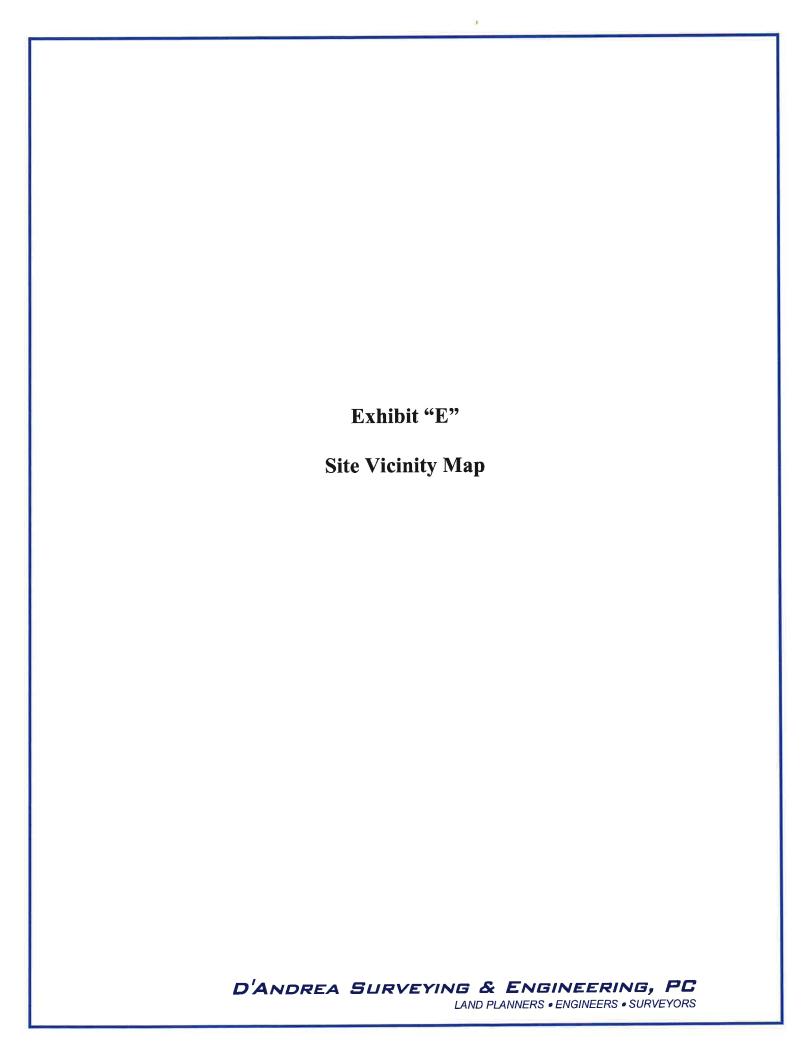
OTHER FEATURES

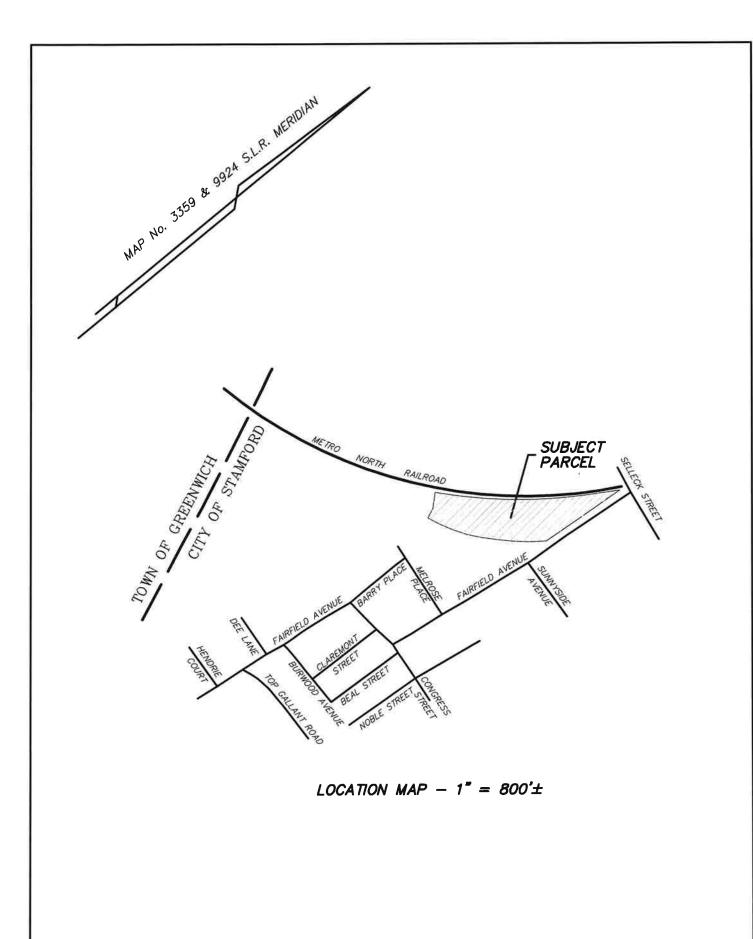
Digital Data Available

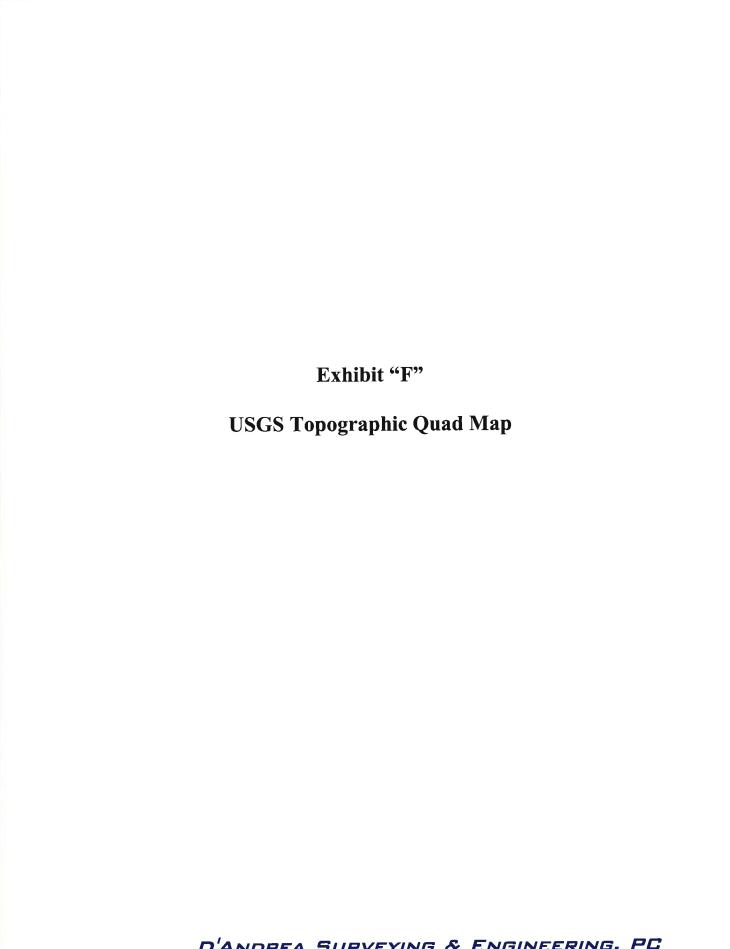
MAP PANELS

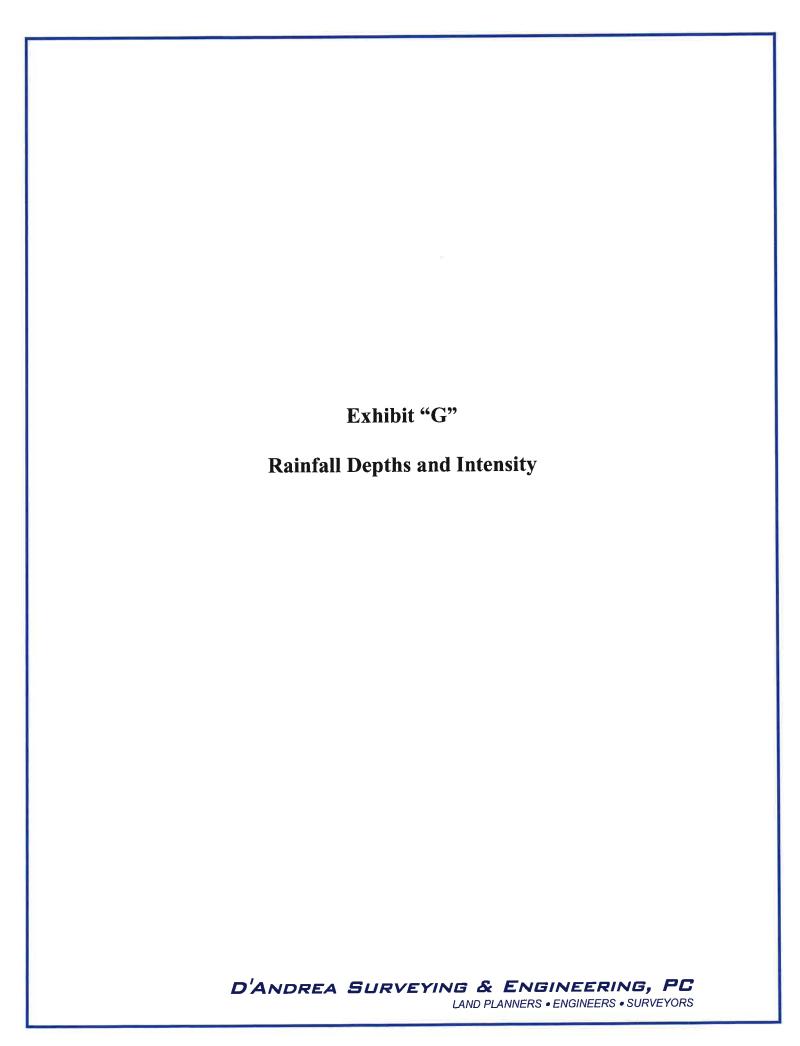
No Digital Data Available

The pin displayed on the map is an approximate point selected by the user and does not represe an authoritative property location.


This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap


authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or was exported on 7/20/2023 at 11.31 AM and does not The flood hazard information is derived directly from the become superseded by new data over time. This map image is void if the one or more of the following map legend, scale bar, map creation date, community identifiers. FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for elements do not appear: basemap imagery, flood zone labels, regulatory purposes,


1,500


1,000

500

NOAA Atlas 14, Volume 10, Version 3 Location name: Stamford, Connecticut, USA* Latitude: 41.0375°, Longitude: -73.5521° Elevation: 75 ft**

* source: ESRI Maps ** source: USGS

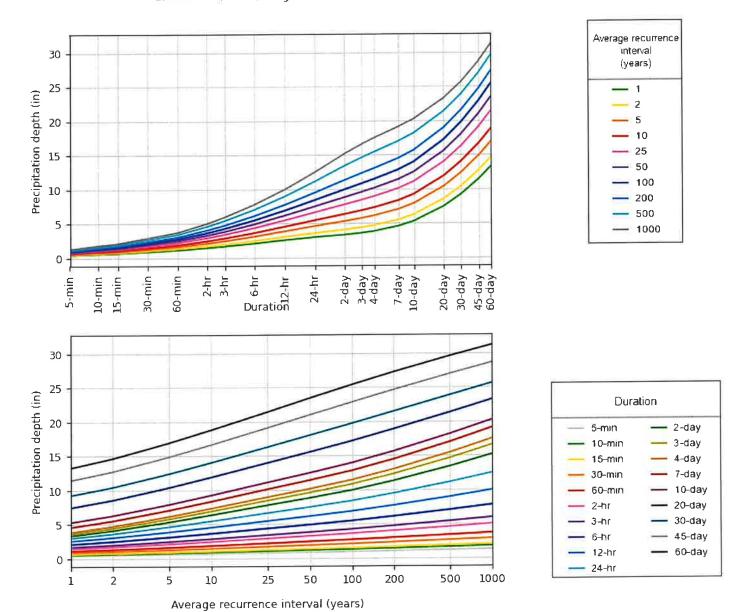
POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

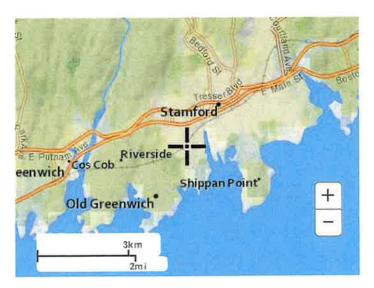

				Average	recurrence	interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.365 (0.280-0.466)	0.425 (0.327-0.543)	0.524 (0.401-0.672)	0.606 (0.462-0.781)	0.719 (0.531-0.958)	0.805 (0.583-1.09)	0.893 (0.629-1.24)	0.990 (0.665-1.41)	1.12 (0.728-1.65)	1.23 (0.781-1.8
10-min	0.516 (0.397-0.660)	0.602 (0.463-0.770)	0.742 (0.569-0.953)	0.859 (0.654-1.11)	1.02 (0.753-1.36)	1.14 (0.826-1.54)	1.27 (0.891-1.76)	1.40 (0.941-2.00)	1.59 (1.03-2.33)	1.75 (1.11-2.60
15-min	0.608 (0.467-0.776)	0.708 (0.544-0.906)	0.873 (0.669-1.12)	1.01 (0.770-1.30)	1.20 (0.886-1.60)	1.34 (0.971-1.82)	1.49 (1.05-2.08)	1.65 (1.11-2.35)	1.88 (1.21-2.74)	2.06 (1.30-3.0
30-min	0.850 (0.653-1.08)	0.992 (0.762-1.27)	1.22 (0.938-1.57)	1.42 (1.08-1.83)	1.68 (1.24-2.24)	1.88 (1.36-2.55)	2.09 (1.47-2.91)	2.31 (1.55-3.29)	2.62 (1.70-3.83)	2.86 (1.81-4.2
60-min	1.09 (0.840-1.40)	1.28 (0.980-1.63)	1.58 (1.21-2.02)	1.82 (1.39-2.35)	2.17 (1.60-2.88)	2.43 (1.76-3.28)	2.70 (1.89-3.74)	2.98 (2.00-4.23)	3.36 (2.18-4.92)	3.66 (2.32-5.4
2-hr	1.42 (1.10-1.80)	1.67 (1.29-2.12)	2.08 (1.60-2.64)	2.42 (1.85-3.09)	2.88 (2.14-3.81)	3.24 (2.36-4.35)	3.60 (2.54-4.99)	4.00 (2.70-5.65)	4.55 (2.96-6.61)	4.99 (3.17-7.38
3-hr	1.63 (1.27-2.07)	1.93 (1.50-2.44)	2.42 (1.87-3.07)	2.82 (2.17-3.59)	3.37 (2.51-4.45)	3.79 (2.77-5.09)	4.23 (3.00-5.84)	4.70 (3.18-6.62)	5.38 (3.50-7.79)	5.92 (3.76-8.73
6-hr	2.06 (1.61-2.58)	2.44 (1.91-3.07)	3.08 (2.40-3.88)	3.61 (2.79-4.57)	4.33 (3.25-5.68)	4.88 (3.58-6.51)	5.45 (3.89-7.50)	6.09 (4.13-8.52)	7.01 (4.58-10.1)	7.77 (4.96-11.4
12-hr	2.53 (1.99-3.15)	3.02 (2.37-3.77)	3.83 (3.00-4.80)	4.50 (3.50-5.67)	5.43 (4.10-7.09)	6.12 (4.53-8.14)	6.85 (4.93-9.40)	7.69 (5.23-10.7)	8.92 (5.84-12.8)	9.93 (6.36-14.
24-hr	2.95 (2.34-3.66)	3.57 (2.82-4.43)	4.59 (3.61-5.71)	5.43 (4.25-6.79)	6.59 (5.00-8.56)	7.45 (5.55-9.87)	8.38 (6.08-11.5)	9.46 (6.46-13.1)	11.1 (7.28-15.7)	12.4 (7.98-18.
2-day	3.30 (2.62-4.06)	4.06 (3.23-5.00)	5.30 (4.20-6.55)	6.33 (4.98-7.86)	7.74 (5.92-10.0)	8.79 (6.60-11.6)	9.93 (7.26-13.6)	11.3 (7.74-15.5)	13.4 (8.81-18.9)	15.2 (9.76-21.
3-day	3.56 (2.85-4.37)	4.39 (3.51-5.40)	5.75 (4.57-7.08)	6.88 (5.44-8.50)	8.42 (6.46-10.9)	9.57 (7.21-12.6)	10.8 (7.94-14.7)	12.3 (8.46-16.8)	14.6 (9.64-20.5)	16.6 (10.7-23.
4-day	3.82 (3.06-4.67)	4.69 (3.75-5.74)	6.12 (4.88-7.51)	7.30 (5.79-9.01)	8.93 (6.87-11.5)	10.1 (7.65-13.3)	11.4 (8.41-15.5)	13.0 (8.95-17.8)	15.4 (10.2-21.6)	17.5 (11.3-24.
7-day	4.55 (3.66-5.53)	5.49 (4.42-6.69)	7.04 (5.64-8.60)	8.32 (6.63-10.2)	10.1 (7.78-12.9)	11.4 (8.62-14.8)	12.8 (9.42-17.2)	14.5 (9.99-19.6)	17.0 (11.3-23.7)	19.1 (12.4-27.
10-day	5.26 (4.25-6.38)	6.25 (5.05-7.59)	7.88 (6.34-9.59)	9.23 (7.38-11.3)	11.1 (8.57-14.1)	12.5 (9.44-16.1)	13.9 (10.2-18.6)	15.6 (10.8-21.1)	18.1 (12.1-25.2)	20.2 (13.1-28.
20-day	7.41 (6.03-8.93)	8.53 (6.93-10.3)	10.4 (8.38-12.5)	11.9 (9.54-14.4)	13.9 (10.8-17.5)	15.5 (11.8-19.8)	17.1 (12.6-22.5)	18.9 (13.2-25.3)	21.3 (14.2-29.3)	23.2 (15.1-32.
30-day	9.20 (7.51-11.0)	10.4 (8.48-12.5)	12.4 (10.0-14.9)	14.0 (11.3-16.9)	16.2 (12.6-20.2)	18.0 (13.6-22.7)	19.7 (14.4-25.6)	21.5 (15.0-28.6)	23.8 (16.0-32.7)	25.6 (16.7-35.
45-day	11.4 (9.34-13.6)	12.7 (10.4-15.2)	14.8 (12.1-17.8)	16.6 (13.5-20.0)	19.1 (14.9-23.6)	21.0 (15.9-26.3)	22.8 (16.7-29.3)	24.6 (17.3-32.7)	26.9 (18.1-36.8)	28.6 (18.7-39
60-day	13.2 (10.9-15.8)	14.6 (12.0-17.4)	16.9 (13.8-20.2)	18.8 (15.3-22.6)	21.4 (16.7-26.4)	23.4 (17.8-29.3)	25.4 (18.6-32.5)	27.2	29.6 (19.9-40.2)	31.2 (20.4-43

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

PDS-based depth-duration-frequency (DDF) curves Latitude: 41,0375°, Longitude: -73.5521°


NOAA Atlas 14, Volume 10, Version 3

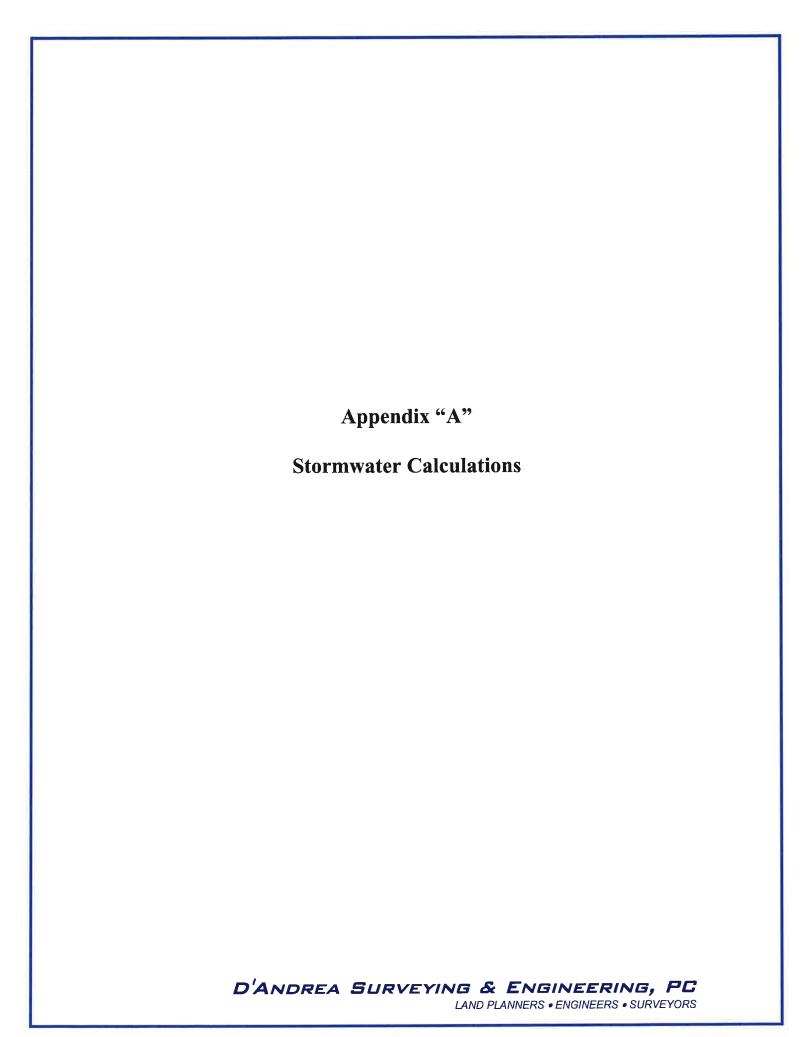
Created (GMT): Tue Jul 18 13:51:37 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial



Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway

Silver Spring, MD 20910
Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Name:

375 Fairfield Avenue Associates

Address:

375 Fairfield Avenue, Stamford, Connecticut

Project:

Commercial Development

$$WQV = \left(\frac{1}{12} \frac{in}{ft}\right) RA$$

Where,

R= Volumetric Runoff Coefficient = 0.05+0.009I

I= Percent Impervious Coverage

A= Watershed Area (sf)

		Imperviou	s Coverage			
Drainage Area	Total Area (sf)	Area (sf)	% Coverage	R (Runoff Coefficient)	WQV (cf)	½ WQV (cf)
Pr. Area #1B	24,237	23,373	96.4	0.9176	1853.3	911.7
Pr. Area #1C	11,957	11,376	95.1	0.9059	902.7	451.4
Pr. Area #1D	10,615	10,408	98.0	0.9320	824.4	412.2
Pr. Area #1E	6,714	6,417	95.6	0.9104	509.4	254.7
Pr. Area #1F	5,125	4,208	82.1	0.7889	336.9	168.5
Pr. Area #2B-1	16,104	15,570	96.7	0.9203	1,235.0	617.5
Pr. Area #2B-2	87,935	85,078	96.8	0.9212	6,750.5	3,375.3

Pr. Area #1B: The ½ WQV for this drainage area will first be pretreated by hydrodynamic Stormwater Treatment System #3 and then it will be collected and infiltrated by Retention System #1. The storage volume of Retention System #1 below the 12" high-overflow outlet orifice will be approximately 976 cubic feet. Refer to attached Stage-Area Storage Table for RS-1.

Pr. Area #1C: The ½ WQV for this drainage area will be pretreated by hydrodynamic Stormwater Treatment System #2.

Pr. Area #1D: The ½ WQV for this drainage area will be collected and infiltrated by Pervious Pavement System #2. The storage volume of Pervious Pavement System #2 below the 8" high-overflow outlet orifice will be approximately 441 cubic feet. Refer to attached Stage-Area Storage Table for PP-2.

Pr. Area #1E: The ½ WQV for this drainage area will be collected and infiltrated by Pervious Pavement System #1. The storage volume of Pervious Pavement System #1 below the 8" high-overflow outlet orifice will be approximately 305 cubic feet. Refer to attached Stage-Area Storage Table for PP-1.

<u>Pr. Area #1F:</u> The ½ WQV for this drainage area will be pretreated by hydrodynamic Stormwater Treatment System #1.

<u>Pr. Area #2B-1:</u> The ½ WQV for this drainage area will be collected and infiltrated by Pervious Pavement System #3. The storage volume of Pervious Pavement System #3 below the 12" high-overflow outlet orifice will be approximately 2,024 cubic feet. Refer to attached Stage-Area Storage Table for PP-3.

<u>Pr. Area #2B-2:</u> The ½ WQV for this drainage area will first be pretreated by hydrodynamic Stormwater Treatment System #4 and then it will be collected and infiltrated by Retention System #2. The storage volume of Retention System #2 below the 18" high-overflow outlet orifice will be approximately 3,415 cubic feet. Refer to attached Stage-Area Storage Table for RS-2.

HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 17P: RS-1

Elevation	Storage	Elevation	Storage	
(feet)	(cubic-feet)	(feet)	(cubic-feet)	
			976	- Hill a see
72.00	0	74.60		- HIGH - OVERFLOW OUTLET
72.05	11	74.65	987	01
72.10	22	74.70	999	
72.15	34	74.75	1,010	
72.20	45	74.80	1,021	
72.25	56	74.85	1,032	
72.30	67	74.90	1,044	
72.35	78	74.95	1,055	
72.40	90	75.00	1,066	
72.45	101	75.05	1,077	
	112	75.10	1,088	
72.50				
72.55	136	75.15	1,100	
72.60	160	75.20	1,111	
72.65	183	75.25	1,116	
72.70	206	75.30	1,118	
72.75	230	75.35	1,121	
72.80	253	75.40	1,124	
72.85	276	75.45	1,127	
72.90	299	75.50	1,130	
72.95	322	75.55	1,132	
73.00	345	75.60	1,135	
	368		1,138	
73.05		75.65		
73.10	390	75.70	1,141	
73.15	413	75.75	1,144	
73.20	435	75.80	1,146	
73.25	458	75.85	1,149	
73.30	480	75.90	1,152	
73.35	502	75.95	1,155	
73.40	524	76.00	1,158	
73.45	546	76.05	1,160	
73.50	567	76.10	1,163	
73.55	589	76.15	1,166	
73.60	610	76.20	1,169	
	632	76.25	1,172	
73.65		76.23 76.30	1,174	
73.70	653			
73.75	674	76.35	1,177	
73.80	694	76.40	1,180	
73.85	715	76.45	1,183	
73.90	735	76.50	1,186	
73.95	755	76.55	1,188	
74.00	775	76.60	1,191	
74.05	794	76.65	1,194	
74.10	813	76.70	1,197	
74.15	832	76.75	1,200	
74.20	850	76.80	1,202	
74.25	868	76.85	1,205	
74.23	886	76.90	1,208	
74.30 74.35	903	76.95	1,211	
74.40	919	77.00	1,214	
74.45	935			
74.50	949			
74.55	963			
	,			

Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 23P: RS-2

Elevation	Storage	Elevation	Storage	
(feet)	(cubic-feet)	(feet)	(cubic-feet)	
67.20	0	72.40	4,163	
67.30	74	72.50	4,182	
67.40	149	72.60	4,200	
67.50	223	72.70	4,219	
67.60	297	72.80	4,237	
67.70	371	72.90	4,256	
67.80	535	73.00	4,275	
67.90	697	73.10	4,293	
68.00	857	73.20	4,312	
68.10	1,017	73.30	4,330	
68.20	1,175	73.40	4,349	
68.30	1,332	73.50	4,367	
68.40	1,487	73.60	4,386 4,405	
68.50	1,640	73.70	4,405	
68.60	1,791	73.80	4,423	
68.70	1,941	73.90	4,442 4,460	
68.80	2,090	74.00		
68.90	2,236	74.10 74.20	4,479 4,497	
69.00	2,378	74.20	4,497 4,516	
69.10	2,518 2,654	74.40	4,534	
69.20		74.40	4,553	
69.30	2,786 2,913	74.50	4,555	
69.40				
69.50	3,034			
69.60	3,148 3,250			
69.70	3,338			
69.80 69.90	3,415	ر بر الل کے		
70.00	3,489	- LIIPH.	OVERFLOW	UNTLET
70.10	3,563			
70.20	3,637			
70.30	3,712			
70.40	3,786			
70.50	3,811			
70.60	3,829			
70.70	3,848			
70.80	3,866			
70.90	3,885			
71.00	3,903			
71.10	3,922			
71.20	3,941			
71.30	3,959			
71.40	3,978			
71.50	3,996			
71.60	4,015			
71.70	4,033			
71.80	4,052			
71.90	4,070			
72.00	4,089	I		
72.10	4,108			
72.20	4,126 4,145			
72.30	4,145			
		· ·		

Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 20P: PP-1

			01
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
74.90	0	75.94	453
74.92	.9	75.96	462
74.94	17	75.98	471
74.96	26	76.00	480
74.98	35	76.02	488
75.00	44	76.04	497
75.02	52	76.06	505
75.04	61	76.08	511
75.06	70	76.10	518 524
75.08	78	76.12	524 531
75.10	87	76.14	537
75.12	96	76.16	537 544
75.14	105	76.18 76.20	550
75.16	113		557
75.18	122	76.22 76.24	564
75.20	131	76.24 76.26	570
75.22	140	76.28	577
75.24	148 157	76.28 76.30	583
75.26	166	76.30 76.32	590
75.28 75.30	174	76.32 76.34	596
75.30 75.32	183	76.36	603
75.32 75.34	192	76.38	609
75.34 75.36	201	76.40	616
75.38 75.38	209	76.42	622
75.40	218	76.44	629
75.42	227	76.46	635
75.44	235	76.48	642
75.46	244	76.50	649
75.48	253	76.52	655
75.50	262	76.54	662
75.52	270	76.56	668
75.54	279	76.58	675
75.56	288	76.60	681
75.58	296	76.62	688
75.60	305	76.64	694
75.62	314	76.66	701
75.64	323	76.68	707
75.66	331	76.70	714
75.68	340	76.72	720
75.70	349	76.74	727
75.72	358	76.76	734
75.74	366	76.78	740
75.76	375	76.80	747
75.78	384		
75.80	392	- HIGH	- OVERFLOW
75.82	401	OUTL	60
75.84	410	0011	-DT
75.86	419		
75.88	427 436		
75.90 75.92	445		
10.82	440		
		1.	

HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 19P: PP-2

Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
75.90	0	76.94	655
75.92	13	76.96	668
75.94	25	76.98	680
75.96	38	77.00	693
75.98	50	77.02	706
76.00	63	77.04	718 729
76.02	76	77.06	729 739
76.04	88 101	77.08 77.10	739 748
76.06 76.08	113	77.10 77.12	758
76.10	126	77.12	767
76.12	139	77.16	776
76.14	151	77.18	786
76.16	164	77.20	795
76.18	176	77.22	805
76.20	189	77.24	814
76.22	202	77.26	824
76.24	214	77.28	833
76.26	227	77.30	843
76.28	239	77.32	852
76.30	252	77.34	862
76.32	265 277	77.36	871 880
76.34	277	77.38 77.40	890
76.36 76.38	290 302	77.42	899
76.36 76.40	315	77.42	909
76.42	328	77.46	918
76.44	340	77.48	928
76.46	353	77.50	937
76.48	365	77.52	947
76.50	378	77.54	956
76.52	391	77.56	965
76.54	403	77.58	975
76.56	416	77.60	984
76.58	428	77.62	994
76.60	441	77.64	1,003
76.62	454	77.66	1,013 1,022
76.64 76.66	466 479	77.68 77.70	1,032
76.68	491	77.72	1,041
76.70	504	77.74	1,051
76.72	517	77.76	1,060
76.74	529	77.78	1,069
76.76	542	77.80	1,079
76.78	554	100	
76.80	567	U. A.	1-OVERFLOW
76.82	580	-7,0	TOPRILOW
76.84	592	Outl	ET
76.86	605	(SOCIAL ST	•
76.88 76.00	617 630		
76.90 76.92	643		
10.32	040	1	

Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 22P: PP-3

Elevation	Storage	Elevation	Storage	
(feet)	(cubic-feet)	(feet)	(cubic-feet)	
69.80	0	72.40	2,631	
69.85	51	72.45	2,682	
69.90	101	72.50	2,732	
	152	72.55	2,783	
69.95			2,834	
70.00	202	72.60		
70.05	253	72.65	2,884	
70.10	304	72.70	2,935	
70.15	354	72.75	2,985	
70.20	405	72.80	3,036	
70.25	455	72.85	3,087	
70.30	506	72.90	3,137	
70.35	557	72.95	3,188	
70.40	607	73.00	3,238	
70.45	658	73.05	3,289	
70.50	708	73.10	3,340	
70.55	759	73.15	3,390	
70.60	810	73.20	3,441	
70.65	860	73.25	3,491	
70.70	911	73.30	3,529	
70.75	961	73.35	3,567	
70.80	1,012	73.40	3,605	
70.85	1,063	73.45	3,643	
70.90	1,113	73.50	3,681	
70.95	1,164	73.55	3,719	
71.00	1,214	73.60	3,757	
71.05	1,265	73.65	3,795	
71.10	1,316	73.70	3,833	
71.15	1,366	73.75	3,871	
71.13	1,417	73.80	3,909	
71.20 71.25	1,467	73.85	3,947	
	1,518	73.90	3,985	
71.30		73.95	4,023	
71.35	1,569	1	4,0 6 1	
71.40	1,619	74.00	4,001	
71.45	1,670			
71.50	1,720			
71.55	1,771			
71.60	1,822			
71.65	1,872			
71.70	1,923			
71.75	1,973	4-11		
71.80	2,024	= 11.9H.	OVERFLOW	0
71.85	2,075		THI DOW	UNTLET
71.90	2,125			
71.95	2,176			
72.00	2,226			
72.05	2,277			
72.10	2,328			
72.15	2,378			
72.20	2,429			
72.25	2,479			
72.30	2,530			
72.35	2,581			
		Ţ:		

Infiltration System Drawdown Calculations

Name:

375 Fairfield Avenue Associates

Address:

375 Fairfield Avenue, Stamford, Connecticut

Project:

Commercial Development

Drawdown Calculations

According to the NRCS Web Soil Survey in Exhibit "C", the site lies within a mapped area of HSG-D soils. The following drawdown calculations are based on the soils observed in each test pit in the vicinity of the respective best management practice. The test pits predominately consisted of silt and sand with some cobbles. A Rawls Infiltration Rate of 0.52 (in/hr) (Loam) was used as an estimate in these calculations. These calculations will be updated, prior to installation, after infiltration tests are performed in the areas of the proposed retention systems.

□ Retention System #1 (RS-1)

$$Time_{drawdown} = \frac{DV}{(K)(A)}$$

DV = Design Volume =
$$976 ft^3$$

K = Infiltration Rate = 0.52 in/hr
A = Bottom Area = $560 ft^2$

$$Time_{drawdown} = \frac{976ft^8}{(0.52^{in}/hr)^{(1ft}/12in)(560ft^2)} = 40.2/hrs$$

The proposed Retention System will draw down within 40.2 hours.

□ Retention System #2 (RS-2)

$$Time_{drawdown} = \frac{DV}{(K)(A)}$$

DV = Design Volume =
$$3,415 ft^3$$

K = Infiltration Rate = 0.52 in/hr
A = Bottom Area = $1,856 ft^2$

$$Time_{drawdown} = \frac{3.415fe^{8}}{(0.52^{in}/hr)(^{1fc}/_{12in})1.856fe^{2}} = 42.5hr$$

The proposed Retention System will draw down within 42.5 hours.

□ Porous Pavement #1 (PP-1)

$$Time_{drawdown} = \frac{DV}{(K)(A)}$$

$$DV = Design Volume = 305 ft^{3}$$

$$K = Infiltration Rate = 0.52 in/hr$$

$$A = Bottom Area = 1,090 ft^{2}$$

$$Time_{drawdown} = \frac{305 f e^{3}}{(0.52^{in}/hr)(^{1}f^{2}/hr)(1.090 fe^{2})} = 6.5 hrs$$

The proposed Porous Pavement retention volume will drawdown within 6.5 hours.

□ Porous Pavement #2 (PP-2)

$$Time_{drawdown} = \frac{DV}{(K)(A)}$$

$$DV = Design Volume = 441 ft^{3}$$

$$K = Infiltration Rate = 0.52 in/hr$$

$$A = Bottom Area = 1,575 ft^{2}$$

$$Time_{drawdown} = \frac{441 ft^{5}}{(0.52^{in}/hr)(^{1}ft/_{12in})^{1.575 ft^{2}}} = 6.5 hr$$

The proposed Porous Pavement retention volume will drawdown within 6.5 hours.

□ Porous Pavement #3 (PP-3)

$$Time_{drawdown} = \frac{DV}{(K)(A)}$$

$$DV = Design Volume = 2,024 ft^{3}$$

$$K = Infiltration Rate = 0.52 in/hr$$

$$A = Bottom Area = 2,530 ft^{2}$$

$$Time_{drawdown} = \frac{2,024 fe^{3}}{(0.52^{in}/hr)(1ft/12in)2,530 fe^{2}} = 18.5 hr$$

The proposed Porous Pavement retention volume will drawdown within 18.5 hours.

Water Quality Volume and Flow Calculations For Proposed Stormwater Treatment Systems

The following calculations have been performed for Drainage Area 1B to SWTS #3.

Calculate the Water Quality Volume (WQV)

$$WQV = \left(\frac{1 \text{ in}}{12 \frac{\text{in}}{\text{ft}}}\right) RA$$

 $A = Drainage Area 1B = 24,237 ft^2$

$$A_{impervious}=23,373 \, \text{ft}^2$$

$$I = \% I m pervious = \frac{A_{impervious}}{A} = \frac{23,373 \text{ ft}^2}{24,237 \text{ ft}^2} (100) = 96.4 \%$$

$$R = \text{Runoff Coefficient} = 0.05 + 0.009 I = 0.05 + 0.009 (96.4\%) = 0.9176$$

R=Runoff Coefficient = 0.05+0.009
$$I$$
 = 0.05+0.00 V = $\left(\frac{1 \text{ in}}{12 \frac{\text{in}}{\text{ft}}}\right) (0.9176) (24,237 \text{ ft}^2) = 1,853.3 \text{ ft}^3$

Compute the Water Quality Flow Rate (WQF)

$$WQF = q_uAQ$$

$$Q = \frac{WQV(12\frac{\text{in}}{\text{ft}})}{A} = \frac{1,853.3 \,\text{ft}^3(12\frac{\text{in}}{\text{ft}})}{24,237 \,\text{ft}^2} = 0.9176 \,\text{in}$$

P=DesignPercipitation=linch

$$CN = \frac{1000}{10 + 5(1 \text{ in}) + 10(0.9176 \text{ in}) - 10((0.9176 \text{ in})^2 + 1.25(0.9176 \text{ in})(1 \text{ in}))^{1/2}} = 99.3$$

 $T_c = 0.167 \, \text{hr} = 10 \, \text{min}$ (Minimum value used in calculation)

 I_a =0.014 in (extrapolated from Table 4-1 2004 CT Stormwater Quality Manual)

$$\frac{I_a}{P} = 0.014 \rightarrow q_u \approx 660 \frac{\text{csm}}{\text{in}} \text{ (From Exhibit 4-111 2004 CT Stormwater Quality Manual)}$$

$$WQF = q_u AQ = \left(660 \frac{\text{csm}}{\text{in}}\right) \left(\frac{24,237 \text{ ft}^2}{\left(5,280 \frac{\text{mi}}{\text{ft}}\right)^2}\right) (0.9176 \text{ in}) = 0.53 \frac{\text{ft}^3}{\text{s}} \qquad WQF = 0.53 \frac{ft^3}{s}$$

The following calculations have been performed for Drainage Area 1C to SWTS #2.

Calculate the Water Quality Volume (WQV)

$$WQV = \left(\frac{1 \text{ in}}{12 \frac{\text{in}}{\text{ft}}}\right) RA$$

 $A = Drainage Area 1C = 11,957 ft^2$

$$A_{impervious}=11,376 \,\mathrm{ft}^2$$

$$I = \% Im pervious = \frac{A_{im pervious}}{A} = \frac{11,376 \,\text{ft}^2}{11,957 \,\text{ft}^2} (100) = 95.1 \,\%$$

$$R = \text{Runoff Coefficient} = 0.05 + 0.009 I = 0.05 + 0.009 (95.1\%) = 0.9059$$

R=Runoff Coefficient = 0.05 + 0.009 I = 0.05 + 0

$$WQV = (\frac{1 \text{ in}}{12 \frac{\text{in}}{\text{ft}}})(0.9059)(11,957 \text{ ft}^2) = 902.7 \text{ ft}^3$$

Compute the Water Quality Flow Rate (WQF)

$$WQF = q_uAQ$$

$$Q = \frac{WQV(12\frac{\text{in}}{\text{ft}})}{A} = \frac{902.7 \,\text{ft}^3(12\frac{\text{in}}{\text{ft}})}{11.957 \,\text{ft}^2} = 0.9059 \,\text{in}$$

P=DesignPercipitation=linch

$$CN = \frac{1000}{10 + 5(1 \text{ in}) + 10(0.9059 \text{ in}) - 10((0.9059 \text{ in})^2 + 1.25(0.9059 \text{ in})(1 \text{ in}))^{1/2}} = 99.2$$

 $T_c = 0.167 \, \text{hr} = 10 \, \text{min}$ (Minimum value used in calculation)

 I_a =0.016 in (extrapolated from Table 4-1 2004 CT Stormwater Quality Manual)

$$\frac{I_a}{P} = 0.016 \rightarrow q_u \approx 650 \frac{\text{csm}}{\text{in}} \text{ (From Exhibit 4-111 2004 CT Stormwater Quality Manual)}$$

$$WQF = q_u AQ = \left(650 \frac{\text{csm}}{\text{in}}\right) \left(\frac{11,957 \text{ ft}^2}{\left(5,280 \frac{\text{mi}}{\text{ft}}\right)^2}\right) (0.9059 \text{ in}) = 0.26 \frac{\text{ft}^3}{\text{s}} \qquad WQF = 0.26 \frac{f t^3}{\text{s}}$$

The following calculations have been performed for Drainage Area 1F to SWTS #1.

Calculate the Water Quality Volume (WQV)

$$WQV = \left(\frac{1 \text{ in}}{12\frac{\text{in}}{\text{ft}}}\right) RA$$

A =Drainage Area 1F=5,125 ft²

$$A_{impervious} = 4,208 \, \text{ft}^2$$

$$I = \% I \text{ m pervious} = \frac{A_{im \text{ pervious}}}{A} = \frac{4,208 \text{ ft}^2}{5,125 \text{ ft}^2} (100) = 82.1 \%$$

$$R = \text{Runoff Coefficient} = 0.05 + 0.009 I = 0.05 + 0.009 (82.1\%) = 0.7889$$

$$WQV = \left(\frac{1 \text{ in}}{12 \frac{\text{in}}{\text{ft}}}\right) (0.7889) (5,125 \text{ ft}^2) = 336.9 \text{ ft}^3$$

Compute the Water Quality Flow Rate (WQF)

$$WQF = q_u AQ$$

$$Q = \frac{WQV(12\frac{\text{in}}{\text{ft}})}{A} = \frac{336.9 \,\text{ft}^3(12\frac{\text{in}}{\text{ft}})}{5,125 \,\text{ft}^2} = 0.7889 \,\text{in}$$

P = DesignPercipitation = 1inch

$$CN = \frac{1000}{10 + 5(1 \text{ in}) + 10(0.7889 \text{ in}) - 10((0.7889 \text{ in})^2 + 1.25(0.7889 \text{ in})(1 \text{ in}))^{1/2}} = 98.0$$

 $T_c = 0.167 \,\mathrm{hr} = 10 \,\mathrm{min}$ (Minimum value used in calculation)

 I_a =0.041 in (extrapolated from Table 4-1 2004 CT Stormwater Quality Manual)

$$\frac{I_a}{P} = 0.041 \rightarrow q_u \approx 630 \frac{\text{csm}}{\text{in}} \text{ (From Exhibit 4-111 2004 CT Stormwater Quality Manual)}$$

$$WQF = q_u AQ = \left(630 \frac{\text{csm}}{\text{in}}\right) \left(\frac{5,125 \text{ ft}^2}{\left(5,280 \frac{\text{mi}}{\text{ft}}\right)^2}\right) (0.7889 \text{ in}) = 0.09 \frac{\text{ft}^3}{\text{s}} \qquad WQF = 0.09 \frac{ft^3}{\text{s}}$$

The following calculations have been performed for Drainage Area 2B-2 to SWTS #4.

Calculate the Water Quality Volume (WQV)

$$WQV = (\frac{1 \text{ in}}{12 \frac{\text{in}}{\text{ft}}})RA$$

$$A = \text{Drainage Area } 2B - 2 = 87,935 \text{ ft}^2$$

$$A_{impervious} = 85,078 \text{ ft}^2$$

$$I = \% I m pervious = \frac{A_{impervious}}{A} = \frac{85,078 \text{ ft}^2}{87,935 \text{ ft}^2} (100) = 96.8 \%$$

$$R = \text{Runoff Coefficient} = 0.05 + 0.009 I = 0.05 + 0.009 (96.8 \%) = 0.9212$$

$$WQV = (\frac{1 \text{ in}}{12 \frac{\text{in}}{\text{ft}}})(0.9212)(87,935 \text{ ft}^2) = 6,750.5 \text{ ft}^3$$

Compute the Water Quality Flow Rate (WQF)

$$WQF = q_u AQ$$

$$Q = \frac{WQV(12\frac{\text{in}}{\text{ft}})}{A} = \frac{6,750.5 \,\text{ft}^3(12\frac{\text{in}}{\text{ft}})}{87,935 \,\text{ft}^2} = 0.9212 \,\text{in}$$

P = DesignPercipitation = 1inch

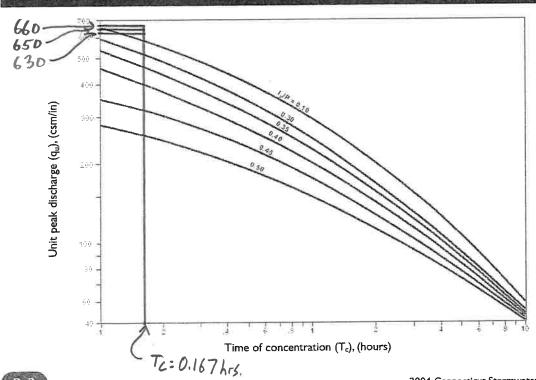
$$CN = \frac{1000}{10 + 5(1 \text{ in}) + 10(0.9212 \text{ in}) - 10((0.9212 \text{ in})^2 + 1.25(0.9212 \text{ in})(1 \text{ in}))^{1/2}} = 99.3$$

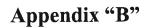
 $T_c = 0.167 \, \text{hr} = 10 \, \text{min}$ (Minimum value used in calculation)

 I_a =0.014 in (extrapolated from Table 4-1 2004 CT Stormwater Quality Manual)

$$\frac{I_a}{P} = 0.014 \rightarrow q_u \approx 660 \frac{\text{csm}}{\text{in}} \text{ (From Exhibit 4-111 2004 CT Stormwater Quality Manual)}$$

$$WQF = q_u AQ = \left(660 \frac{\text{csm}}{\text{in}}\right) \left(\frac{87,935 \text{ ft}^2}{\left(5,280 \frac{\text{mi}}{\text{ft}}\right)^2}\right) (0.9212 \text{ in}) = 1.92 \frac{\text{ft}^3}{\text{s}} \qquad WQF = 1.92 \frac{ft^3}{\text{s}}$$


- 2. Compute the time of concentration (t_c) based on the methods described in Chapter 3 of TR-55. A minimum value of 0.167 hours (10 minutes) should be used. For sheet flow, the flow path should not be longer than 300 feet.
- Using the computed CN, t_c, and drainage area (A) in acres, compute the peak discharge for the water quality storm (i.e., the water quality flow [WQF]), based on the procedures described in Chapter 4 of TR-55.
 - O Read initial abstraction (I_a) from Table 4-1 in Chapter 4 of TR-55 (reproduced below); compute I_a/P


Table 4-1 Ia values for runoff curve numbers

Curve I	a.	Curve number	l _a (in)	Curve number	l _a (in)	Curve number	l _a (in)
40	000 5	55	1.636	70	0.857	85	0.353
4 2.8	78	6	1.571	71 *********	0.817	86	0.326
		57	1.509	72	0.778	87	0.299
43		8	1.448	73	0.740	88	0.273
44		59	NAME OF THE OWNER	74	0.703	89	0.247
		50	1.333	75	0.667	90	0.222
		51	1.279	76	0.632	91	891.0
47 2.2		52	1.226	77	0.597	92	0.174
48		3	1.175	78	0.564	93 ,	0.151
	082	54	1.125	79	0.532	94	0.128
50	100000	55	1.077	80	0.500	95	0.105-
		56	1.030	81	0.469	96	0.083
52 1.8	346	57	0.985	82	0.439	97	0.062
	774	58	0.941	83	0.410	98	0.041
	704	59	0.899	84	0.381	99.2	0.01
* 1. Ann. 1. A	vev.	00000000000000000000000000000000000000	2 5 5	The state of the s		94.3	0,014

Read the unit peak discharge (q_u) from Exhibit 4-III in Chapter 4 of TR-55 (reproduced below) for appropriate t_c

Exhibit 4-111 Unit peak discharge (q_u) for NRCS (SCS) type III rainfall distribution

HydroCAD Summary Table Existing & Proposed Conditions

HydroCAD Summary 375 Fairfield Avenue Associates 375 Fairfield Avenue, Stamford, CT Project ID: 23DA

		1 Year	1 Year Storm			2 Year Storm	Storm			5 Year Storm	Storm			10 Year Storm	Storm		. 4	25 Year Storm	Storm			50 Year Storm	Storm	
POC	qex	(2/50)	ЬΦ	pΔ%	qex	8	Δq	β Δ %	Ą	ф	ЬΦ	ρΔ%	qex	Ф	₽ 0	b∇%	qex	ф	δζ	ρΔ%	Q _{ex}	(H ³ /e)	δq	ρΔ%
	(ft ³ /s)	(s/ 11) db	(ft ³ /s)	(ft ³ /s) (ft ³ /s)		(ft^3/s) (ft^3/s)		(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(ft ³ /s)	(e) 41) dh	(ft ³ /s)	(ft ³ /s)
<	5.14	5.14 4.87	-0.27	-5%	-5% 6.32	6.05 -0.27		4%	8.24	7.97	-0.27	-3%	9.81	9.51	-0.30	-3%	11.98 11.60	11.60	-0.38	-3%	13.57	13.11	-0.46	-3%
В	12.93	12.93 12.22	-0.71	-5%	15.79	14.89	-5% 15.79 14.89 -0.90 -6%	%9-	20.47	20.14	-0.33	-2%	24.31 24.31	24.31	0.00	%0	29.59	29.47	-0.12	%0	33.50	33.23	-0.27	-1%
E	,	THE PARTY OF THE PROPERTY OF T			10 7-10	Davie	Jan all D	1 30 min	ı.	ininin a	manufactor Degogod of of minimization manage	Duonona	1 Dande	Mome										

Table I: Comparison of Exising and Proposed Peak Flow Rates for all Points of Concern pertaining to the Proposed Development.

	L	1 Year	1 Year Storm			2 Year Storm	Storm			5 Year Storm	Storm			10 Year Storm	Storm	_		25 Year Storm	torm			50 Year Storm	torm	
POC	vex (cf)	v _p (cf)	v_{ex} (cf) v_{p} (cf) v_{p} (cf) v_{p} (cf) v_{ex} (cf) v_{p} (cf) v_{p} (cf) v_{p} (cf) v_{p} (cf) v_{p} (cf) v_{p}	%Δv (cf)	vex (cf)	v _p (cf)	Δv (cf)	3.0	vex (cf)	v _p (cf)	$_{\rm vex}$ (cf) $_{\rm vp}$ (cf) $_{\rm vp}$ (cf) $_{\rm cf}$ $_{\rm vex}$ (cf) $_{\rm vex}$ (cf) $_{\rm vp}$ (cf) $_{\rm vp}$ (cf) $_{\rm cf}$	%Av (cf)	vex (cf)	v _p (cf)	Δv (cf)		vex (cf)	v _p (cf)	Δv (cf)	%Av (cf)	vex (cf)	$v_{ex}(cf)$ $v_{p}(cf)$ $\Delta v(cf)$ $\frac{\%\Delta v}{(cf)}$ $v_{ex}(cf)$ $v_{p}(cf)$ $\Delta v(cf)$ $\frac{\%\Delta v}{(cf)}$	Δv (cf)	%Δv (cf)
⋖	16,938	14,986	16,938 14,986 -1,952 -12% 21,077 19,095 -1,982 -9%	-12%	21,077	19,095	-1,982	vo.	27,917	25,897	27,917 25,897 -2,020 -7% 33,567 31,522 -2,045 -6% 41,383 39,309 -2,074 -5% 47,184 45,092 -2,092 4%	-7%	33,567	31,522	-2,045	%9-	41,383	39,309	-2,074	-5%	47,184	45,092	-2,092	4%
В	43,528	38,293	43,528 38,293 -5,235 -12% 53,737 48,513 -5,224 -10%	-12%	53,737	48,513	-5,224			65,366	70,574 65,366 -5,208 -7% 84,463 79,266 -5,197 -6% 103,660 98,478 -5,182 -5% 117,901 112,729 -5,172 4%	-7%	84,463	79,266	-5,197	%9-	103,660	98,478	-5,182	-5%	117,901	112,729	-5,172	4%
Journal of the Charles of the Charle	,				1.27		, II D	130	,	ainio,	nomining honorous and of mining	Juganand	Danolon	, nom										

Table 2: Comparison of Exising and Proposed Runoff Volumes for all Points of Concern pertaining to the Proposed Development.

Appendix "C"

HydroCAD Analysis - Existing Conditions

Link 1L: POC A

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
12,520	80	>75% Grass cover, Good, HSG D (1S, 2S, 3S, 4S, 5S, 6S, 8S)
79,217	96	Gravel surface, HSG D (1S, 3S, 4S, 8S, 10S)
35,869	98	Paved parking, HSG C (1S)
281,097	98	Paved parking, HSG D (2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S)
408,703	97	TOTAL AREA

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 1-Year Rainfall=2.95" Printed 9/21/2023 Page 2

Inflow=5.14 cfs 16,938 cf Primary=5.14 cfs 16,938 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
routing by Dyn-Stor-Ind method

	Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method	
Subcatchment 1S: DA-1	Runoff Area=81,209 sf 44,17% Impervious Runoff Dep Flow Length=518' Tc=5.9 min CN=96 Runoff=5,14 cfs 1	th=2.50" 6,938 cf
Subcatchment 2S: DA-2A	Runoff Area=11,511 sf 90.29% Impervious Runoff Dep Tc=5.0 min CN=96 Runoff=0.75 cfs	
Subcatchment 3S: DA-2B	Runoff Area=103,810 sf 83,25% Impervious Runoff Dep Flow Length=620' Tc=6.3 min CN=97 Runoff=6.63 cfs 2	th=2.61" 22,568 cf
Subcatchment 4S: DA-2C	Runoff Area=31,123 sf 95.54% Impervious Runoff Dep Tc=5.0 min CN=97 Runoff=2.08 cfs	
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96.47% Impervious Runoff Dep Tc=5,0 min CN=97 Runoff=0.91 cfs	
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98,03% Impervious Runoff Dep Tc=5,0 min CN=98 Runoff=2,65 cfs	th=2.72" 8,834 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100.00% Impervious Runoff Dep Tc=5.0 min CN=98 Runoff=1,90 cfs	
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70,01% Impervious Runoff Dep Tc=5.0 min CN=97 Runoff=5.21 cfs	
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100.00% Impervious Runoff Dep Tc=5.0 min CN=98 Runoff=1.18 cfs	oth=2-72" 3,942 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63.13% Impervious Runoff Dep Tc=5.0 min CN=97 Runoff=0.34 cfs	oth=2.61" 1,097 cf

23DA_Ex-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 1-Year Rainfall=2.95" Printed 9/21/2023 Page 3		
Link 2L: POC B	Inflow=12.93 cfs 43,528 cf Primary=12.93 cfs 43,528 cf		
Link 3L: POC C	Inflow=5.21 cfs 16,955 cf Primary=5.21 cfs 16,955 cf		
Link 4L: POC D	Inflow=1.18 cfs 3,942 cf Primary=1.18 cfs 3,942 cf		
Link 5L: POC E	Inflow=0.34 cfs 1,097 cf Primary=0.34 cfs 1,097 cf		

Total Runoff Area = 408,703 sf Runoff Volume = 88,805 cf Average Runoff Depth = 2.61" 22.45% Pervious = 91,737 sf 77.55% Impervious = 316,966 sf

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Link 6L: POC F

Link 1L: POC A

Type III 24-hr 2-Year Rainfall=3.57" Printed 9/21/2023 Page 4

> Inflow=6.32 cfs 21,077 cf Primary=6.32 cfs 21,077 cf

Inflow=1.90 cfs 6,345 cf

Primary=1.90 cfs 6,345 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method

	Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method
Subcatchment 1S: DA-1	Runoff Area=81,209 sf 44.17% Impervious Runoff Depth=3,11" Flow Length=518' Tc=5.9 min CN=96 Runoff=6.32 cfs 21,077 cf
Subcatchment 2S: DA-2A	Runoff Area=11,511 sf 90.29% Impervious Runoff Depth=3.11" Tc=5.0 min CN=96 Runoff=0.92 cfs 2,988 cf
Subcatchment 3S: DA-2B	Runoff Area=103,810 sf 83.25% Impervious Runoff Depth=3.22" Flow Length=620' Tc=6.3 min CN=97 Runoff=8.09 cfs 27,890 cf
Subcatchment 4S: DA-2C	Runoff Area=31,123 sf 95.54% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=2.54 cfs 8,362 cf
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96,47% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=1,11 cfs 3,656 cf
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98.03% Impervious Runoff Depth=3.34" Tc=5,0 min CN=98 Runoff=3.22 cfs 10,842 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100,00% Impervious Runoff Depth=3.34" Tc=5.0 min CN=98 Runoff=2,31 cfs 7,787 cf
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70,01% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=6.36 cfs 20,953 cf
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100,00% Impervious Runoff Depth=3.34" Tc=5.0 min CN=98 Runoff=1,44 cfs 4,838 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63,13% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=0.41 cfs 1,355 cf

23DA_Ex-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 2-Year Rainfall=3.57" Printed 9/21/2023 Page 5
Link 2L: POC B	Inflow=15.79 cfs 53,737 cf Primary=15.79 cfs 53,737 cf
Link 3L: POC C	Inflow=6,36 cfs 20,953 cf Primary=6.36 cfs 20,953 cf
Link 4L: POC D	Inflow=1.44 cfs 4,838 cf Primary=1.44 cfs 4,838 cf
Link 5L: POC E	Inflow=0.41 cfs 1,355 cf Primary=0,41 cfs 1,355 cf
Link 6L: POC F	Inflow=2,31 cfs 7,787 cf Primary=2.31 cfs 7,787 cf

Total Runoff Area = 408,703 sf Runoff Volume = 109,747 cf Average Runoff Depth = 3.22" 22.45% Pervious = 91,737 sf 77.55% Impervious = 316,966 sf

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Link 1L: POC A

Type III 24-hr 5-Year Rainfall=4.59" Printed 9/21/2023 Page 6

> Inflow=8.24 cfs 27,917 cf Primary=8.24 cfs 27,917 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

2	
Subcatchment 1S: DA-1	Runoff Area=81,209 sf 44,17% Impervious Runoff Depth=4,13" Flow Length=518' Tc=5.9 min CN=96 Runoff=8,24 cfs 27,917 cf
Subcatchment 2S: DA-2A	Runoff Area=11,511 sf 90.29% Impervious Runoff Depth=4.13" Tc=5.0 min CN=96 Runoff=1.21 cfs 3,957 cf
Subcatchment 3S: DA-2B	Runoff Area=103,810 sf 83.25% Impervious Runoff Depth=4.24" Flow Length=620' Tc=6.3 min CN=97 Runoff=10.50 cfs 36,668 cf
Subcatchment 4S: DA-2C	Runoff Area=31,123 sf 95.54% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=3.29 cfs 10,993 cf
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96.47% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=1.44 cfs 4,807 cf
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98.03% Impervious Runoff Depth=4.35" Tc=5.0 min CN=98 Runoff=4.16 cfs 14,149 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100.00% Impervious Runoff Depth=4.35" Tc=5.0 min CN=98 Runoff=2.99 cfs 10,162 cf
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70.01% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=8.25 cfs 27,547 cf
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100,00% Impervious Runoff Depth=4,35" Tc=5.0 min CN=98 Runoff=1.86 cfs 6,313 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63.13% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=0.53 cfs 1,782 cf

23DA_Ex-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 5-Year Rainfall=4.59" Printed 9/21/2023 Page 7
Link 2L: POC B	Inflow=20.47 cfs 70,574 cf Primary=20,47 cfs 70,574 cf
Link 3L: POC C	Inflow=8.25 cfs 27,547 cf Primary=8.25 cfs 27,547 cf
Link 4L: POC D	Inflow=1,86 cfs 6,313 cf Primary=1,86 cfs 6,313 cf
Link 5L: POC E	Inflow=0,53 cfs 1,782 cf Primary=0.53 cfs 1,782 cf

Total Runoff Area = 408,703 sf Runoff Volume = 144,297 cf Average Runoff Depth = 4.24" 22.45% Pervious = 91,737 sf 77.55% Impervious = 316,966 sf

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Link 6L: POC F

Link 1L: POC A

Type III 24-hr 10-Year Rainfall=5.43" Printed 9/21/2023 Page 8

Inflow=2.99 cfs 10,162 cf Primary=2.99 cfs 10,162 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

	Reach fouling by by it old find mothed	Total routing by by the manner
Subcatchment 1S: DA-1		Runoff Area=81,209 sf 44.17% Impervious Runoff Depth=4,96" Flow Length=518' Tc=5.9 min CN=96 Runoff=9.81 cfs 33,567 cf
Subcatchment 2S: DA-2A		Runoff Area=11,511 sf 90.29% Impervious Runoff Depth=4,96" Tc=5.0 min CN=96 Runoff=1,44 cfs 4,758 cf
Subcatchment 3S: DA-2B		Runoff Area=103,810 sf 83.25% Impervious Runoff Depth=5.08" Flow Length=620' Tc=6.3 min CN=97 Runoff=12.47 cfs 43,909 cf
Subcatchment 4S: DA-2C		Runoff Area=31,123 sf 95,54% Impervious Runoff Depth=5,08" Tc=5.0 min CN=97 Runoff=3.91 cfs 13,164 cf
Subcatchment 5S: DA-2D		Runoff Area=13,610 sf 96.47% Impervious Runoff Depth=5.08" Tc=5.0 min CN=97 Runoff=1,71 cfs 5,757 cf
Subcatchment 6S: DA-2E		Runoff Area=38,997 sf 98.03% Impervious Runoff Depth=5.19" Tc=5.0 min CN=98 Runoff=4,93 cfs 16,874 cf
Subcatchment 7S: DA-3		Runoff Area=28,009 sf 100.00% Impervious Runoff Depth=5.19" Tc=5.0 min CN=98 Runoff=3.54 cfs 12,120 cf
Subcatchment 8S: DA-4		Runoff Area=77,989 sf 70,01% Impervious Runoff Depth=5.08" Tc=5.0 min CN=97 Runoff=9,80 cfs 32,987 cf
Subcatchment 9S: DA-5A		Runoff Area=17,400 sf 100.00% Impervious Runoff Depth=5.19" Tc=5.0 min CN=98 Runoff=2.20 cfs 7,529 cf
Subcatchment 10S: DA-5B		Runoff Area=5,045 sf 63.13% Impervious Runoff Depth=5.08" Tc=5.0 min CN=97 Runoff=0.63 cfs 2,134 cf

Inflow=9.81 cfs 33,567 cf Primary=9.81 cfs 33,567 cf

23DA_Ex-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 10-Year Rainfall=5.43" Printed 9/21/2023 Page 9		
Link 2L: POC B	Inflow=24,31 cfs 84,463 cf Primary=24.31 cfs 84,463 cf		
Link 3L: POC C	Inflow=9.80 cfs 32,987 cf Primary=9.80 cfs 32,987 cf		
Link 4L: POC D	Inflow=2.20 cfs 7,529 cf Primary=2,20 cfs 7,529 cf		
Link 5L: POC E	Inflow=0.63 cfs 2,134 cf Primary=0.63 cfs 2,134 cf		
Link 6L: POC F	Inflow=3.54 cfs 12,120 cf Primary=3.54 cfs 12,120 cf		

Total Runoff Area = 408,703 sf Runoff Volume = 172,800 cf Average Runoff Depth = 5.07" 22.45% Pervious = 91,737 sf 77.55% Impervious = 316,966 sf

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Link 1L: POC A

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 10

> Inflow=11.98 cfs 41,383 cf Primary=11.98 cfs 41,383 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

	Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method	
Subcatchment 1S: DA-1	Runoff Area=81,209 sf 44,17% Impervious Runoff Depth=6.1 Flow Length=518' Tc=5.9 min CN=96 Runoff=11.98 cfs 41,383	
Subcatchment 2S: DA-2A	Runoff Area=11,511 sf 90.29% Impervious Runoff Depth=6. Tc=5,0 min CN=96 Runoff=1.75 cfs 5,866	
Subcatchment 3S: DA-2B	Runoff Area=103,810 sf 83.25% Impervious Runoff Depth=6.2 Flow Length=620' Tc=6.3 min CN=97 Runoff=15.18 cfs 53,919	
Subcatchment 4S: DA-2C	Runoff Area=31,123 sf 95.54% Impervious Runoff Depth=6.3 Tc=5.0 min CN=97 Runoff=4.76 cfs 16,165	
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96.47% Impervious Runoff Depth=6.3 Tc=5.0 min CN=97 Runoff=2,08 cfs 7,068	
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98,03% Impervious Runoff Depth=6. Tc=5,0 min CN=98 Runoff=5,99 cfs 20,640	pth=6.35" 20,640 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100,00% Impervious Runoff Depth=6. Tc=5,0 min CN=98 Runoff=4,30 cfs 14,824	
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70.01% Impervious Runoff Depth=6 Tc=5.0 min CN=97 Runoff=11.94 cfs 40,508	pth=6.23" 40,508 cf
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100.00% Impervious Runoff Depth=6. Tc=5,0 min CN=98 Runoff=2.67 cfs 9,209	pth=6.35" 9,209 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63,13% Impervious Runoff Depth=6. Tc=5.0 min CN=97 Runoff=0.77 cfs 2,620	

23DA_Ex-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 11		
Link 2L: POC B	Inflow=29.59 cfs 103,660 cf Primary=29,59 cfs 103,660 cf		
Link 3L: POC C	Inflow=11,94 cfs 40,508 cf Primary=11,94 cfs 40,508 cf		
Link 4L: POC D	Inflow=2.67 cfs 9,209 cf Primary=2,67 cfs 9,209 cf		
Link 5L: POC E	Inflow=0.77 cfs 2,620 cf Primary=0.77 cfs 2,620 cf		

Total Runoff Area = 408,703 sf Runoff Volume = 212,205 cf Average Runoff Depth = 6.23" 22.45% Pervious = 91,737 sf 77.55% Impervious = 316,966 sf

23DA Ex-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Link 6L: POC F

Type III 24-hr 50-Year Rainfall=7.45" Printed 9/21/2023 Page 12

Inflow=4,30 cfs 14,824 cf

Primary=4.30 cfs 14,824 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Reach fouling by Dyn-Stor-ind method - Fond fouling by Dyn-Stor ind method			
Subcatchment 1S: DA-1	Runoff Area=81,209 sf 44.17% Impervious Runoff Depth=6,97" Flow Length=518' Tc=5.9 min CN=96 Runoff=13.57 cfs 47,184 cf		
Subcatchment 2S: DA-2A	Runoff Area=11,511 sf 90.29% Impervious Runoff Depth=6.97" Tc=5.0 min CN=96 Runoff=1,99 cfs 6,688 cf		
Subcatchment 3S: DA-2B	Runoff Area=103,810 sf 83.25% Impervious Runoff Depth=7.09" Flow Length=620' Tc=6.3 min CN=97 Runoff=17.19 cfs 61,346 cf		
Subcatchment 4S: DA-2C	Runoff Area=31,123 sf 95.54% Impervious Runoff Depth=7.09" Tc=5.0 min CN=97 Runoff=5.39 cfs 18,392 cf		
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96.47% Impervious Runoff Depth=7.09" Tc=5.0 min CN=97 Runoff=2,36 cfs 8,043 cf		
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98.03% Impervious Runoff Depth=7.21" Tc=5.0 min CN=98 Runoff=6.78 cfs 23,433 cf		
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100,00% Impervious Runoff Depth=7.21" Tc=5.0 min CN=98 Runoff=4.87 cfs 16,830 cf		
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70,01% Impervious Runoff Depth=7,09" Tc=5,0 min CN=97 Runoff=13,52 cfs 46,087 cf		
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100.00% Impervious Runoff Depth=7.21" Tc=5.0 min CN=98 Runoff=3,03 cfs 10,455 cf		
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63.13% Impervious Runoff Depth=7.09" Tc=5.0 min CN=97 Runoff=0.87 cfs 2,981 cf		
Link 1L: POC A	Inflow=13.57 cfs 47,184 cf Primary=13.57 cfs 47,184 cf		

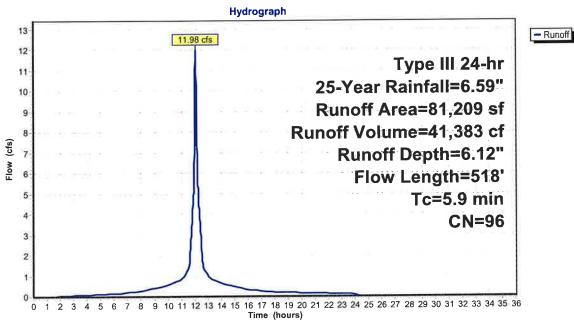
23DA_Ex-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 50-Year Rainfall=7.45" Printed 9/21/2023 Page 13
Link 2L: POC B	Inflow=33.50 cfs 117,901 cf Primary=33,50 cfs 117,901 cf
Link 3L: POC C	Inflow=13.52 cfs 46,087 cf Primary=13.52 cfs 46,087 cf
Link 4L: POC D	Inflow=3.03 cfs 10,455 cf Primary=3.03 cfs 10,455 cf
Link 5L: POC E	Inflow=0.87 cfs 2,981 cf Primary=0.87 cfs 2,981 cf
Link 6L: POC F	Inflow=4.87 cfs 16,830 cf Primary=4.87 cfs 16,830 cf

Total Runoff Area = 408,703 sf Runoff Volume = 241,439 cf Average Runoff Depth = 7.09" 22.45% Pervious = 91,737 sf 77.55% Impervious = 316,966 sf

Summary for Subcatchment 1S: DA-1

Runoff = 11.98 cfs @ 12.08 hrs, Volume=

41,383 cf, Depth= 6.12"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

A	rea (sf)	CN I	Description				
	35,869	98 F	Paved parking, HSG C				
	42,357	96 (Gravel surf	ace, HSG D			
	2,983	80 >	75% Gras	s cover, Go	ood, HSG D		
	81,209	96 \	Veighted A	verage			
	45,340	5	5.83% Pe	rvious Area			
	35,869	4	4.17% lm	pervious Ar	ea ea		
Tc	Length	Slope	Velocity		Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
1.9	188	0.0190	1.61		Sheet Flow, 1		
					Smooth surfaces n= 0.011 P2= 3.57"		
4,0	330	0.0045	1.36		Shallow Concentrated Flow, 2		
					Paved Kv= 20.3 fps		
5.9	518	Total					

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

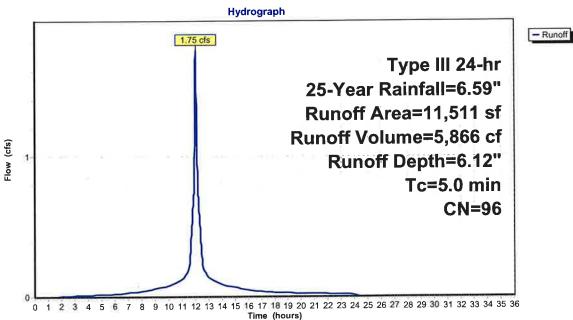
Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 15

Subcatchment 1S: DA-1

Summary for Subcatchment 2S: DA-2A

Runoff = 1.75 cfs @ 12.07 hrs, Volume=

5,866 cf, Depth= 6.12"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf) CN Description								
	10,393	0,393 98 Paved parking, HSG D							
	1,118 80 >75% Grass cover, Good, HSG D								
	11,511 96 Weighted Average								
	1,118 9.71% Pervious Area								
	10,393		90.29% Impervious Area						
To (min)		Slope (ft/ft		Capacity (cfs)	Description				
5.0					Direct Entry, 1				

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

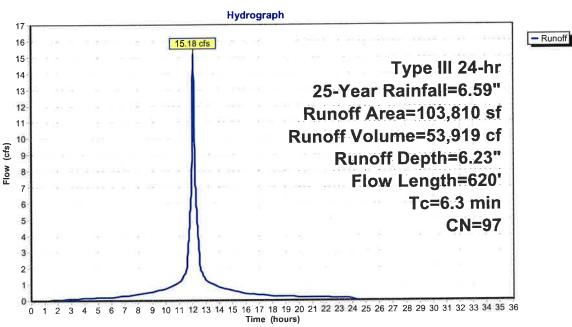
Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 17

Subcatchment 2S: DA-2A

Summary for Subcatchment 3S: DA-2B

Runoff = 15.18 cfs @ 12.09 hrs, Volume=

53,919 cf, Depth= 6.23"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Α	rea (sf)	CN [Description							
		86,420	98 F	aved park	ing, HSG D						
		13,949			ace, HSG D						
		3,441	80 >	75% Gras	s cover. Go	ood, HSG D					
10-	1	03.810	97 V	97 Weighted Average							
	17,390		16.75% Pervious Area								
	86,420		83.25% Impervious Area								
		,									
	Tc	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.6	45	0.0220	1.29		Sheet Flow, 1					
						Smooth surfaces n= 0.011 P2= 3.57"					
	4.5	250	0.0040	0.92		Sheet Flow, 2					
						Smooth surfaces n= 0.011 P2= 3.57"					
	0.2	40									
						Paved Kv= 20.3 fps					
	0.9	255	0.0100	4.50	1.57						
						8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17'					
						n= 0.010 PVC, smooth interior					
	0.1	30	0.0030	3.85	6.80						
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'					
						n= 0.011 Concrete pipe, straight & clean					
	6.3	620	Total								

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

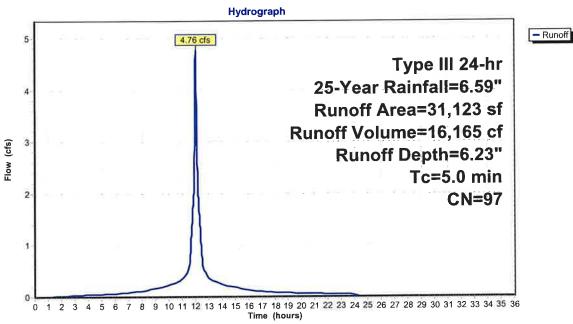
Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 19

Subcatchment 3S: DA-2B

Summary for Subcatchment 4S: DA-2C

Runoff = 4.76 cfs @ 12.07 hrs, Volume=

16,165 cf, Depth= 6.23"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description							
	29,734	98	Paved park	Paved parking, HSG D						
	158	96	Gravel surface, HSG D							
	1,231	80	80 >75% Grass cover, Good, HSG D							
	31,123	97	97 Weighted Average							
	1,389	,389 4.46% Pervious Ārea								
	29,734		95.54% Imp	pervious Are	ea					
T (min		Slop (ft/f		Capacity (cfs)	Description					
5.	0		2.0		Direct Entry, 1					

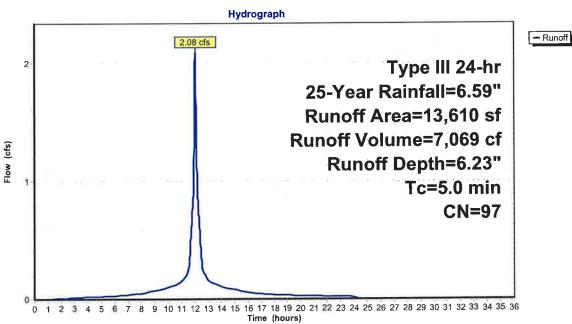
23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 21

Summary for Subcatchment 5S: DA-2D

Runoff = 2,08 cfs @ 12.07 hrs, Volume=

7,069 cf, Depth= 6.23"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description						
	13,130	98	Paved parking, HSG D						
	480 80 >75% Grass cover, Good, HSG D								
	13,610	13,610 97 Weighted Average							
	480	480 3,53% Pervious Area							
	13,130 96.47% Impervious Area								
To (min)		Slop (ft/fr		Capacity (cfs)	Description				
5.0					Direct Entry, 1				

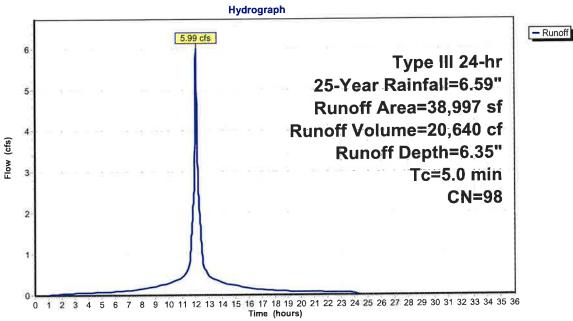
23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 23

Summary for Subcatchment 6S: DA-2E

Runoff = 5.99 cfs @ 12.07 hrs, Volume=

20,640 cf, Depth= 6.35"

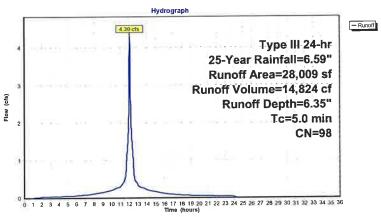

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36,00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description	7.		
	38,227		Paved park			
	770	80	>75% Gras	s cover, Go	od, HSG D	
	38,997	98	Weighted A	verage		
	770		1.97% Pen	rious Area		
	38,227		98.03% lm	pervious Ar	ea	
_	T- 1	Class	e Velocity	Capacity	Description	
	To Length	Slop	,		Description	
<u>(mi</u>	in) (feet)	(ft/f) (ft/sec)	(cfs)		
5	0.0				Direct Entry, 1	

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 25

Summary for Subcatchment 7S: DA-3


Runoff = 4.30 cfs @ 12.07 hrs, Volume=

14,824 cf, Depth= 6.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

Are	ea (sf)	CN	Description							
2	28,009	98	Paved parking, HSG D							
2	28,009		100.00% In	pervious A	rea					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
5.0					Direct Entry, 1					

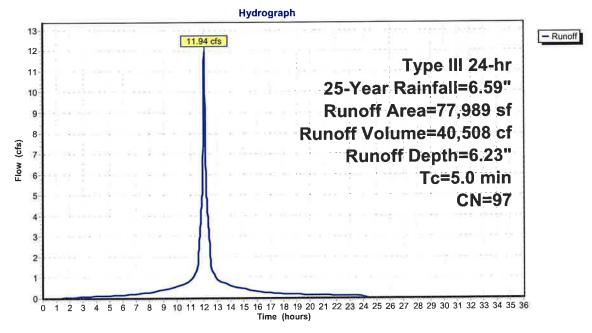
Subcatchment 7S: DA-3

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 27

Summary for Subcatchment 8S: DA-4

Runoff = 11.94 cfs @ 12.07 hrs, Volume=


40,508 cf, Depth= 6.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description								
	54,599	98	Paved parking, HSG D								
	20,893	96	Gravel surf	ace, HSG D							
	2,497	80	>75% Gras	s cover, Go	od, HSG D						
	77,989	97	Weighted A	Average							
	23,390 29.99% Pervious Area										
	54,599		70.01% lm	pervious Are	ea						
Ti	c Length	Slope			Description						
(min) (feet)	(ft/ft) (ft/sec)	(cfs)							
	^				Discot Enters 1						

5.0 Direct Entry, 1

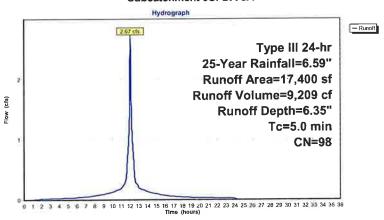
Subcatchment 8S: DA-4

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 29

Summary for Subcatchment 9S: DA-5A

Runoff


2.67 cfs @ 12.07 hrs, Volume=

9,209 cf, Depth= 6.35"

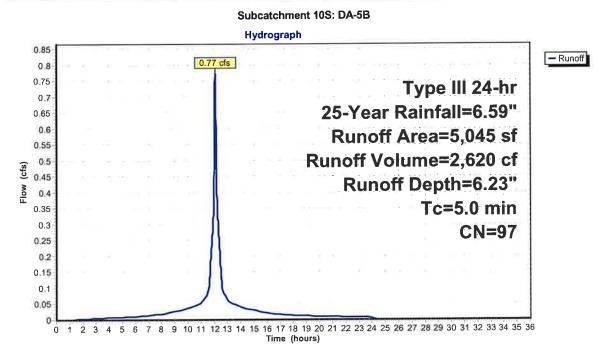
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description			
	17,400	98	Paved park	ing, HSG D		
	17,400		100.00% In	npervious A	rea	
- (mi	Tc Length	Slop (ft/fi		Capacity (cfs)	Description	
5	.0		V		Direct Entry, 1	

Subcatchment 9S: DA-5A

Summary for Subcatchment 10S: DA-5B

Runoff = 0.77 cfs @ 12.07 hrs, Volume=

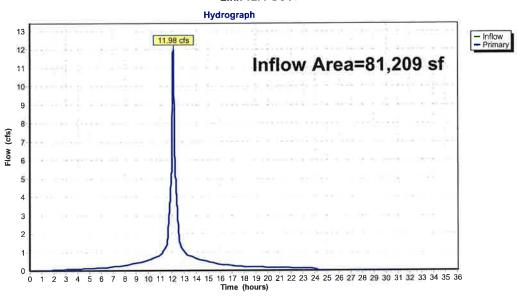

2,620 cf, Depth= 6.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description			
	3,185	98	Paved park	ing, HSG D		
	1,860	96	Gravel surf	ace, HSG D		
	5,045	97	Weighted A	verage		
	1,860		36.87% Pe	rvious Area		
	3,185		63.13% lm	pervious Are	ea	
Ţ		Slop			Description	
(min	i) (feet)	(ft/f	(ft/sec)	(cfs)		
5.	0				Direct Entry, 1	

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 31



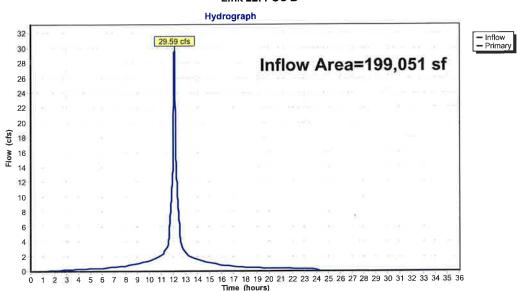
Summary for Link 1L: POC A

| Inflow Area = | 81,209 sf, 44.17% Impervious, Inflow Depth = 6.12" for 25-Year event | 11.98 cfs @ 12.08 hrs, Volume= | 41,383 cf | 41,383 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 1L: POC A

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

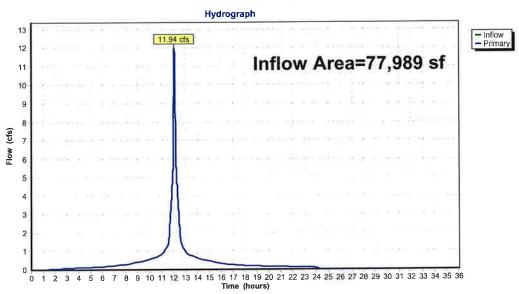

Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 33

Summary for Link 2L: POC B

| Inflow Area = 199,051 sf, 89.38% impervious, Inflow Depth = 6.25" for 25-Year event | Inflow = 29.59 cfs @ 12.08 hrs, Volume= 103,660 cf | 103,660 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 2L: POC B



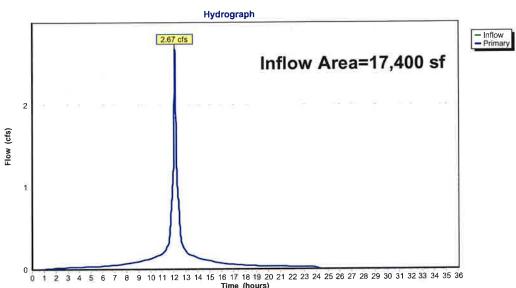
Summary for Link 3L: POC C

Inflow Area = 77,989 sf, 70.01% Impervious, Inflow Depth = 6,23" for 25-Year event Inflow = 11.94 cfs @ 12.07 hrs, Volume= 40,508 cf
Primary = 11.94 cfs @ 12.07 hrs, Volume= 40,508 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 3L: POC C

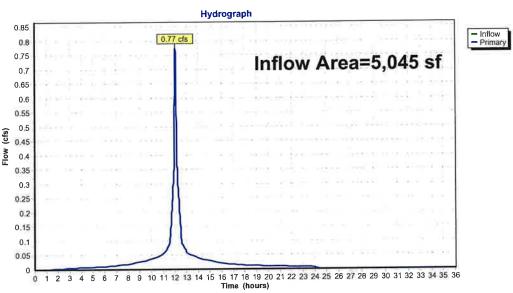
23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC


Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 35

Summary for Link 4L: POC D

Inflow Area = 17,400 sf,100.00% Impervious, Inflow Depth = 6.35" for 25-Year event Inflow = 2.67 cfs @ 12.07 hrs, Volume= 9,209 cf
Primary = 2.67 cfs @ 12.07 hrs, Volume= 9,209 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

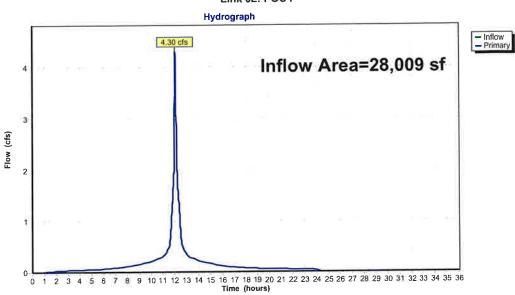

Link 4L: POC D

Summary for Link 5L: POC E

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

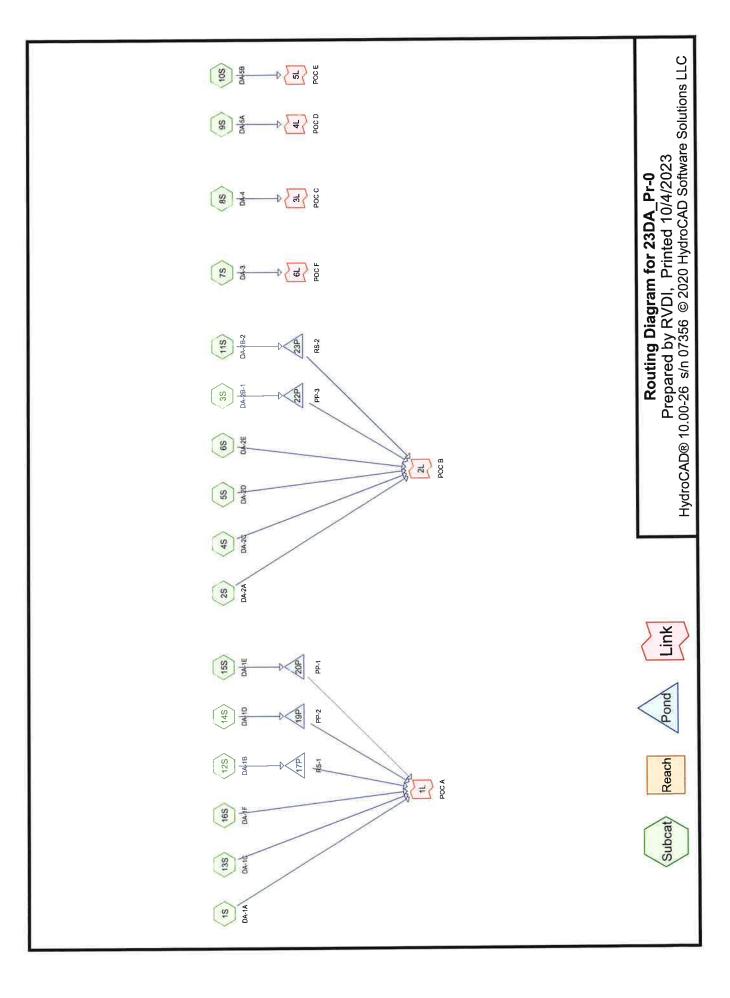
Link 5L: POC E

23DA_Ex-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC


Type III 24-hr 25-Year Rainfall=6.59" Printed 9/21/2023 Page 37

Summary for Link 6L: POC F

| Inflow Area = 28,009 sf,100.00% | Impervious, | Inflow Depth = 6.35" | for 25-Year event | Inflow = 4.30 cfs @ 12.07 hrs, | Volume = 14,824 cf | Atten= 0%, | Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 6L: POC F

Appendix "D"

HydroCAD Analysis - Proposed Conditions

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
20,633	80	>75% Grass cover, Good, HSG D (1S, 3S, 4S, 5S, 6S, 8S, 11S, 12S, 13S, 14S, 15S, 16S)
28,146	96	Gravel surface, HSG D (3S, 4S, 8S, 10S)
14,480	98	Paved parking, HSG C (1S)
345,444	98	Paved parking, HSG D (2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 14S, 15S, 16S)
408,703	97	TOTAL AREA

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 1-Year Rainfall=2.95" Printed 10/4/2023 Page 2

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

	readily by by the title the title	
Subcatchment 1S: DA-1A	Runoff	Area=22,445 sf 64,51% Impervious Runoff Depth=2,11" Tc=5.0 min CN=92 Runoff=1.30 cfs 3,954 cf
Subcatchment 2S: DA-2A	Runoff	Area=9,611 sf 100.00% Impervious Runoff Depth=2.72" Tc=5.0 min CN=98 Runoff=0.65 cfs 2,177 cf
Subcatchment 3S: DA-2B-1	Runoff	Area=16,104 sf 65.67% Impervious Runoff Depth=2.61" Tc=5.0 min CN=97 Runoff=1.08 cfs 3,501 cf
Subcatchment 4S: DA-2C	Runoff	Area=32,910 sf 90,69% Impervious Runoff Depth=2.61" Tc=5.0 min CN=97 Runoff=2.20 cfs 7,155 cf
Subcatchment 5S: DA-2D	Runoff	Area=13,610 sf 96,47% Impervious Runoff Depth=2.61" Tc=5.0 min CN=97 Runoff=0.91 cfs 2,959 cf
Subcatchment 6S: DA-2E	Runoff	Area=38,997 sf 98.03% Impervious Runoff Depth=2.72" Tc=5,0 min CN=98 Runoff=2,65 cfs 8,834 cf
Subcatchment 7S: DA-3	Runoff	Area=28,009 sf 100.00% Impervious Runoff Depth=2,72" Tc=5.0 min CN=98 Runoff=1,90 cfs 6,345 cf
Subcatchment 8S: DA-4	Runof	Area=77,989 sf 70,01% Impervious Runoff Depth=2.61" Tc=5,0 min CN=97 Runoff=5.21 cfs 16,955 cf
Subcatchment 9S: DA-5A	Runoff	Area=17,400 sf 100.00% Impervious Runoff Depth=2.72" Tc=5.0 min CN=98 Runoff=1.18 cfs 3,942 cf
Subcatchment 10S: DA-5B	Runo	ff Area=5,045 sf 63.13% Impervious Runoff Depth=2.61" Tc=5.0 min CN=97 Runoff=0.34 cfs 1,097 cf
Subcatchment 11S: DA-2B-2	Runof	Area=87,935 sf 96.75% Impervious Runoff Depth=2.61" Tc=5.0 min CN=97 Runoff=5.87 cfs 19,117 cf

Subcatchment 12S: DA-1B

HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Runoff Area=24,237 sf 96,44% Impervious Runoff Depth=2.61" Tc=5.0 min CN=97 Runoff=1.62 cfs 5,269 cf

 Subcatchment 13S: DA-1C
 Runoff Area=11,957 sf
 95.14% Impervious
 Runoff Depth=2.61"

 Tc=5,0 min
 CN=97
 Runoff=0,80 cfs
 2,599 cf

 Subcatchment 14S: DA-1D
 Runoff Area=10,615 sf
 98,05% Impervious
 Runoff Depth=2,72"

 Tc=5,0 min
 CN=98
 Runoff=0.72 cfs
 2,405 cf

Subcatchment 15S: DA-1E Runoff Area=6,714 sf 95.58% Impervious Runoff Depth=2,61"

Tc=5,0 min CN=97 Runoff=0.45 cfs 1,460 cf

 Subcatchment 16S: DA-1F
 Runoff Area=5,125 sf
 82.11% Impervious
 Runoff Depth=2,40"

 Tc=5,0 min
 CN=95
 Runoff=0.33 cfs
 1,025 cf

Pond 17P: RS-1

Peak Elev=75.29' Storage=1,118 cf Inflow=1.62 cfs 5,269 cf
12.0" Round Culvert n=0.013 L=112.0' S=0.0152 '/' Outflow=1.62 cfs 4,293 cf

Pond 19P: PP-2 Peak Elev=77.05' Storage=723 cf Inflow=0,72 cfs 2,405 cf

8.0" Round Culvert n=0.010 L=305.0' S=0.0200 '/' Outflow=0.57 cfs 1,961 cf

Pond 20P: PP-1 Peak Elev=75.95' Storage=458 cf Inflow=0.45 cfs 1,460 cf 8.0" Round Culvert n=0.010 L=3.0' S=0.1000 '/' Outflow=0.37 cfs 1,153 cf

Pond 22P: PP-3

Peak Elev=72.00' Storage=2,223 cf Inflow=1.08 cfs 3,501 cf
12.0" Round Culvert n=0.013 L=260.0' S=0.0100 '/' Outflow=0.17 cfs 1,470 cf

Pond 23P: RS-2

Peak Elev=71,39' Storage=3,976 of Inflow=5.87 cfs 19,117 of 18,0" Round Culvert n=0.013 L=20.0' S=0.0050 '/' Outflow=5.83 cfs 15,698 of

Link 1L: POC A Inflow=4,87 cfs 14,986 cf
Primary=4,87 cfs 14,986 cf

Inflow=12,22 cfs 38,293 cf

Link 2L: POC B Inflow=12,22 cfs 38,293 cf
Primary=12,22 cfs 38,293 cf

23DA_Pr-0 Type III 24-hr 1-Year Rainfall=2.95"
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC
Page 4

 Link 3L: POC C
 Inflow=5.21 cfs 16,955 cf

 Primary=5.21 cfs 16,955 cf
 16,955 cf

Link 4L: POC D Inflow=1.18 cfs 3,942 cf Primary=1.18 cfs 3,942 cf

 Link 5L: POC E
 Inflow=0.34 cfs 1,097 cf

 Primary=0.34 cfs 1,097 cf
 1,097 cf

Link 6L: POC F Inflow=1.90 cfs 6,345 cf
Primary=1.90 cfs 6,345 cf

Total Runoff Area = 408,703 sf Runoff Volume = 88,793 cf Average Runoff Depth = 2.61" 11.94% Pervious = 48,779 sf 88.06% Impervious = 359,924 sf

Primary=14,89 cfs 48,513 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

0 , ,	
Subcatchment 1S: DA-1A	Runoff Area=22,445 sf 64,51% Impervious Runoff Depth=2,70" Tc=5,0 min CN=92 Runoff=1.64 cfs 5,057 cf
Subcatchment 2S: DA-2A	Runoff Area=9,611 sf 100.00% Impervious Runoff Depth=3.34" Tc=5.0 min CN=98 Runoff=0.79 cfs 2,672 cf
Subcatchment 3S: DA-2B-1	Runoff Area=16,104 sf 65,67% Impervious Runoff Depth=3.22" Tc=5,0 min CN=97 Runoff=1,31 cfs 4,327 cf
Subcatchment 4S: DA-2C	Runoff Area=32,910 sf 90.69% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=2.69 cfs 8,842 cf
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96.47% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=1.11 cfs 3,656 cf
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98.03% Impervious Runoff Depth=3.34" Tc=5.0 min CN=98 Runoff=3,22 cfs 10,842 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100.00% Impervious Runoff Depth=3.34" Tc=5.0 min CN=98 Runoff=2.31 cfs 7,787 cf
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70.01% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=6,36 cfs 20,953 cf
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100.00% Impervious Runoff Depth=3.34" Tc=5,0 min CN=98 Runoff=1,44 cfs 4,838 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63,13% Impervious Runoff Depth=3,22" Tc=5.0 min CN=97 Runoff=0,41 cfs 1,355 cf
Subcatchment 11S: DA-2B-2	Runoff Area=87,935 sf 96,75% Impervious Runoff Depth=3.22" Tc=5,0 min CN=97 Runoff=7.17 cfs 23,625 cf

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solution	Type III 24-hr 2-Year Rainfall=3.57" Printed 10/4/2023 Page 6
Subcatchment 12S: DA-1B	Runoff Area=24,237 sf 96.44% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=1.98 cfs 6,512 cf
Subcatchment 13S: DA-1C	Runoff Area=11,957 sf 95.14% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=0.98 cfs 3,212 cf
Subcatchment 14S: DA-1D	Runoff Area=10,615 sf 98.05% Impervious Runoff Depth=3.34" Tc=5.0 min CN=98 Runoff=0.88 cfs 2,951 cf
Subcatchment 15S: DA-1E	Runoff Area=6,714 sf 95.58% Impervious Runoff Depth=3.22" Tc=5.0 min CN=97 Runoff=0.55 cfs 1,804 cf
Subcatchment 16S: DA-1F	Runoff Area=5,125 sf 82.11% Impervious Runoff Depth=3,01" Tc=5,0 min CN=95 Runoff=0.40 cfs 1,285 cf
Pond 17P: RS-1	Peak Elev=75.38' Storage=1,123 cf Inflow=1,98 cfs 6,512 cf 12,0" Round Culvert n=0.013 L=112.0' S=0.0152 '/' Outflow=1,97 cfs 5,535 cf
Pond 19P: PP-2	Peak Elev=77.12' Storage=759 cf Inflow=0.88 cfs 2,951 cf 8,0" Round Culvert n=0.010 L=305.0' S=0.0200 '/' Outflow=0.72 cfs 2,508 cf
Pond 20P: PP-1	Peak Elev=76.00' Storage=478 cf Inflow=0.55 cfs 1,804 cf 8.0" Round Culvert n=0.010 L=3.0' S=0.1000 '/' Outflow=0.46 cfs 1,497 cf
Pond 22P: PP-3	Peak Elev=72.14 Storage=2,368 cf Inflow=1.31 cfs 4,327 cf 12.0" Round Culvert n=0.013 L=260.0' S=0.0100 '/' Outflow=0.47 cfs 2,296 cf
Pond 23P: RS-2	Peak Elev=71.63' Storage=4,020 cf Inflow=7.17 cfs 23,625 cf 18.0" Round Culvert n=0.013 L=20.0' S=0.0050 '/' Outflow=7,11 cfs 20,206 cf
Link 1L: POC A	Inflow=6,05 cfs 19,095 cf Primary=6,05 cfs 19,095 cf
Link 2L: POC B	Inflow=14,89 cfs 48,513 cf Primarv=14,89 cfs 48,513 cf

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 2-Year Rainfall=3.57" Printed 10/4/2023 Page 7
Link 3L: POC C	Inflow=6.36 cfs 20,953 cf Primary=6,36 cfs 20,953 cf
Link 4L: POC D	Inflow=1,44 cfs 4,838 cf Primary=1.44 cfs 4,838 cf
Link 5L: POC E	Inflow=0.41 cfs 1,355 cf Primary=0.41 cfs 1,355 cf
Link 6L: POC F	inflow=2.31 cfs 7,787 cf Primary=2.31 cfs 7,787 cf

Total Runoff Area = 408,703 sf Runoff Volume = 109,717 cf Average Runoff Depth = 3.22" 11.94% Pervious = 48,779 sf 88.06% Impervious = 359,924 sf

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 5-Year Rainfall=4.59" Printed 10/4/2023 Page 8

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: DA-1A	Runoff Area=22,445 sf 64.51% Impervious Runoff Depth=3.69" Tc=5.0 min CN=92 Runoff=2.20 cfs 6,901 cf
Subcatchment 2S: DA-2A	Runoff Area=9,611 sf 100,00% Impervious Runoff Depth=4.35" Tc=5.0 min CN=98 Runoff=1,03 cfs 3,487 cf
Subcatchment 3S: DA-2B-1	Runoff Area=16,104 sf 65,67% Impervious Runoff Depth=4.24" Tc=5,0 min CN=97 Runoff=1.70 cfs 5,688 cf
Subcatchment 4S: DA-2C	Runoff Area=32,910 sf 90,69% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=3,48 cfs 11,624 cf
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96,47% Impervious Runoff Depth=4,24" Tc=5.0 min CN=97 Runoff=1.44 cfs 4,807 cf
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98,03% Impervious Runoff Depth=4,35" Tc=5.0 min CN=98 Runoff=4,16 cfs 14,149 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100.00% Impervious Runoff Depth=4.35" Tc=5.0 min CN=98 Runoff=2.99 cfs 10,162 cf
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70.01% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=8,25 cfs 27,547 cf
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100.00% Impervious Runoff Depth=4,35" Tc=5.0 min CN=98 Runoff=1.86 cfs 6,313 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63.13% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=0.53 cfs 1,782 cf
Subcatchment 11S: DA-2B-2	Runoff Area=87,935 sf 96,75% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=9.30 cfs 31,060 cf

Type III 24-hr	5-Year Rair	nfall=4.59"
	Printed	10/4/2023

Inflow=20.14 cfs 65,366 cf Primary=20.14 cfs 65,366 cf

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solution	Type III 24-hr 5-Year Rainfall=4.59" Printed 10/4/2023 s LLC Page 9
Subcatchment 12S: DA-1B	Runoff Area=24,237 sf 96.44% Impervious Runoff Depth=4,24" Tc=5,0 min CN=97 Runoff=2.56 cfs 8,561 cf
Subcatchment 13S: DA-1C	Runoff Area=11,957 sf 95,14% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=1.27 cfs 4,223 cf
Subcatchment 14S: DA-1D	Runoff Area=10,615 sf 98,05% Impervious Runoff Depth=4.35" Tc=5.0 min CN=98 Runoff=1.13 cfs 3,851 cf
Subcatchment 15S: DA-1E	Runoff Area=6,714 sf 95.58% Impervious Runoff Depth=4.24" Tc=5.0 min CN=97 Runoff=0.71 cfs 2,372 cf
Subcatchment 16S: DA-1F	Runoff Area=5,125 sf 82,11% Impervious Runoff Depth=4.01" Tc=5,0 min CN=95 Runoff=0,53 cfs 1,714 cf
Pond 17P: RS-1	Peak Elev=75.55' Storage=1,132 cf Inflow=2.56 cfs 8,561 cf 12,0" Round Culvert n=0.013 L=112,0' S=0.0152 '!' Outflow=2,56 cfs 7,585 cf
Pond 19P: PP-2	Peak Elev=77.24' Storage=814 cf Inflow=1.13 cfs 3,851 cf 8.0" Round Culvert n=0,010 L=305.0' S=0,0200 '/' Outflow=0.94 cfs 3,408 cf
Pond 20P: PP-1	Peak Elev=76,07' Storage=509 cf Inflow=0.71 cfs 2,372 cf 8,0" Round Culvert n=0.010 L=3.0' S=0.1000 '/' Outflow=0.62 cfs 2,065 cf
Pond 22P: PP-3	Peak Elev=72.37' Storage=2,599 cf Inflow=1,70 cfs 5,688 cf 12.0" Round Culvert n=0,013 L=260,0' S=0,0100 '/' Outflow=1,18 cfs 3,657 cf
Pond 23P: RS-2	Peak Elev=72.09' Storage=4,106 cf Inflow=9,30 cfs 31,060 cf 18.0" Round Culvert n=0,013 L=20.0' S=0.0050 '/' Outflow=9,24 cfs 27,641 cf
Link 1L: POC A	Inflow=7,97 cfs 25,897 cf Primary=7.97 cfs 25,897 cf

Link 2L: POC B

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 5-Year Rainfall≃4.59" Printed 10/4/2023 Page 10
Link 3L: POC C	Inflow=8.25 cfs 27,547 cf Primary=8.25 cfs 27,547 cf
Link 4L: POC D	Inflow=1.86 cfs 6,313 cf Primary=1.86 cfs 6,313 cf
Link 5L: POC E	Inflow=0.53 cfs 1,782 cf Primary=0.53 cfs 1,782 cf
Link 6L: POC F	Inflow=2.99 cfs 10,162 cf Primary=2.99 cfs 10,162 cf

Total Runoff Area = 408,703 sf Runoff Volume = 144,244 cf Average Runoff Depth = 4.24" 11.94% Pervious = 48,779 sf 88.06% Impervious = 359,924 sf

Inflow=24,31 cfs 79,266 cf Primary=24.31 cfs 79,266 cf

Link 2L: POC B

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: DA-1A	Runoff Area=22,445 sf 64.51% Impervious Runoff Depth=4,51" Tc=5,0 min CN=92 Runoff=2,66 cfs 8,436 cf
Subcatchment 2S: DA-2A	Runoff Area=9,611 sf 100,00% Impervious Runoff Depth=5,19" Tc=5,0 min CN=98 Runoff=1,22 cfs 4,159 cf
Subcatchment 3S: DA-2B-1	Runoff Area=16,104 sf 65,67% Impervious Runoff Depth=5.08" Tc=5.0 min CN=97 Runoff=2.02 cfs 6,812 cf
Subcatchment 4S: DA-2C	Runoff Area=32,910 sf 90.69% Impervious Runoff Depth=5.08" Tc=5.0 min CN=97 Runoff=4.14 cfs 13,920 cf
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96,47% Impervious Runoff Depth=5.08" Tc=5,0 min CN=97 Runoff=1.71 cfs 5,757 cf
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98.03% Impervious Runoff Depth=5.19" Tc=5.0 min CN=98 Runoff=4.93 cfs 16,874 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100.00% Impervious Runoff Depth=5,19" Tc=5.0 min CN=98 Runoff=3.54 cfs 12,120 cf
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70,01% Impervious Runoff Depth=5,08" Tc=5,0 min CN=97 Runoff=9.80 cfs 32,987 cf
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100.00% Impervious Runoff Depth=5.19" Tc=5,0 min CN=98 Runoff=2,20 cfs 7,529 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63,13% Impervious Runoff Depth=5,08" Tc=5,0 min CN=97 Runoff=0,63 cfs 2,134 cf
Subcatchment 11S: DA-2B-2	Runoff Area=87,935 sf 96.75% Impervious Runoff Depth=5.08" Tc=5.0 min CN=97 Runoff=11,05 cfs 37,194 cf

23DA Pr-0	Type III 24-hr 10-Year Rainfall=5.43"
Prepared by RVDI	Printed 10/4/2023
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Page 12
	D (1.4 04.007 - C. 440/ Imperious Burnett Depth=5.08"

HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions	LLC Page 12
Subcatchment 12S: DA-1B	Runoff Area=24,237 sf 96,44% Impervious Runoff Depth=5,08" Tc=5.0 min CN=97 Runoff=3.05 cfs 10,252 cf
Subcatchment 13S: DA-1C	Runoff Area=11,957 sf 95,14% Impervious Runoff Depth=5.08" Tc=5.0 min CN=97 Runoff=1.50 cfs 5,058 cf
Subcatchment 14S: DA-1D	Runoff Area=10,615 sf 98,05% Impervious Runoff Depth=5,19" Tc=5,0 min CN=98 Runoff=1.34 cfs 4,593 cf
Subcatchment 15S: DA-1E	Runoff Area=6,714 sf 95,58% Impervious Runoff Depth=5.08" Tc=5,0 min CN=97 Runoff=0,84 cfs 2,840 cf
Subcatchment 16S: DA-1F	Runoff Area=5,125 sf 82.11% Impervious Runoff Depth=4.85" Tc=5.0 min CN=95 Runoff=0.63 cfs 2,070 cf
Pond 17P: RS-1	Peak Elev=75.74' Storage=1,143 cf Inflow=3,05 cfs 10,252 cf 12,0" Round Culvert n=0.013 L=112.0' S=0.0152'/ Outflow=3,03 cfs 9,276 cf
Pond 19P: PP-2	Peak Elev=77.35' Storage=866 cf Inflow=1,34 cfs 4,593 cf 8,0" Round Culvert n=0.010 L=305.0' S=0.0200 '/' Outflow=1,09 cfs 4,150 cf
Pond 20P: PP-1	Peak Elev=76.14' Storage=529 cf Inflow=0.84 cfs 2,840 cf 8,0" Round Culvert n=0,010 L=3,0' S=0,1000 '/' Outflow=0.75 cfs 2,534 cf
Pond 22P: PP-3	Peak Elev=72.49' Storage=2,718 cf Inflow=2.02 cfs 6,812 cf 12.0" Round Culvert n=0.013 L=260.0' S=0.0100 '/' Outflow=1.62 cfs 4,781 cf
Pond 23P: RS-2	Peak Elev=72.41' Storage=4,166 cf
Link 1L: POC A	Inflow=9.51 cfs 31,522 cf Primary=9.51 cfs 31,522 cf

 23DA_Pr-0
 Type III 24-hr 10-Year Rainfall=5.43"

 Prepared by RVDI
 Printed 10/4/2023

 HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC
 Page 13

 Link 3L: POC C
 Inflow=9.80 cfs 32,987 cf

 Primary=9,80 cfs 32,987 cf
 97.987 cf

Link 4L: POC D Inflow=2,20 cfs 7,529 cf Primary=2.20 cfs 7,529 cf

 Link 5L: POC E
 Inflow=0.63 cfs 2,134 cf

 Primary=0.63 cfs 2,134 cf
 2,134 cf

Link 6L: POC F

Inflow=3,54 cfs 12,120 cf
Primary=3,54 cfs 12,120 cf

Total Runoff Area = 408,703 sf Runoff Volume = 172,734 cf Average Runoff Depth = 5.07" 11.94% Pervious = 48,779 sf 88.06% Impervious = 359,924 sf

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 14

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

 Subcatchment 1S: DA-1A
 Runoff Area=22,445 sf
 64.51% Impervious
 Runoff Depth=5.65"

 Tc=5.0 min
 CN=92
 Runoff=3.29 cfs
 10,568 cf

Subcatchment 2S: DA-2A Runoff Area=9,611 sf 100,00% Impervious Runoff Depth=6.35"

Tc=5.0 min CN=98 Runoff=1.48 cfs 5,087 cf

Subcatchment 3S: DA-2B-1

Runoff Area=16,104 sf 65.67% Impervious Runoff Depth=6.23"

Tc=5.0 min CN=97 Runoff=2.46 cfs 8,364 cf

Subcatchment 4S: DA-2C Runoff Area=32,910 sf 90.69% Impervious Runoff Depth=6.23"

Tc=5.0 min CN=97 Runoff=5.04 cfs 17,094 cf

Subcatchment 5S: DA-2D

Runoff Area=13,610 sf 96.47% Impervious Runoff Depth=6.23"

Subcatchment 5S: DA-2D Runoff Area=13,610 sf 96.47% Impervious Runoff Deptn=6.25°

Tc=5,0 min CN=97 Runoff=2,08 cfs 7,069 cf

 Subcatchment 6S: DA-2E
 Runoff Area=38,997 sf
 98.03% Impervious
 Runoff Depth=6.35"

 Tc=5.0 min
 CN=98
 Runoff=5.99 cfs
 20,640 cf

 Subcatchment 7S: DA-3
 Runoff Area=28,009 sf
 100.00% Impervious
 Runoff Depth=6,35"

 Tc=5.0 min
 CN=98
 Runoff=4,30 cfs
 14,824 cf

 Subcatchment 8S: DA-4
 Runoff Area=77,989 sf
 70.01% Impervious
 Runoff Depth=6.23"

 Tc=5.0 min
 CN=97
 Runoff=11.94 cfs
 40,508 cf

Subcatchment 10S: DA-5B Runoff Area=5,045 sf 63.13% Impervious Runoff Depth=6.23"

Tc=5.0 min CN=97 Runoff=0.77 cfs 2,620 cf

 Subcatchment 11S: DA-2B-2
 Runoff Area=87,935 sf
 96.75% Impervious
 Runoff Depth=6.23"

 Tc=5.0 min
 CN=97
 Runoff=13.46 cfs
 45,674 cf

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solution	Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 s LLC Page 15
Subcatchment 12S: DA-1B	Runoff Area=24,237 sf 96,44% Impervious Runoff Depth=6,23" Tc=5,0 min CN=97 Runoff=3,71 cfs 12,589 cf
Subcatchment 13S: DA-1C	Runoff Area=11,957 sf 95.14% Impervious Runoff Depth=6.23" Tc=5,0 min CN=97 Runoff=1.83 cfs 6,211 cf
Subcatchment 14S: DA-1D	Runoff Area=10,615 sf 98.05% Impervious Runoff Depth=6.35" Tc=5.0 min CN=98 Runoff=1,63 cfs 5,618 cf
Subcatchment 15S: DA-1E	Runoff Area=6,714 sf 95,58% Impervious Runoff Depth=6.23" Tc=5.0 min CN=97 Runoff=1.03 cfs 3,487 cf
Subcatchment 16S: DA-1F	Runoff Area=5,125 sf 82.11% Impervious Runoff Depth=6.00" Tc=5.0 min CN=95 Runoff=0,77 cfs 2,562 cf
Pond 17P: RS-1	Peak Elev=76.05' Storage=1,160 cf Inflow=3,71 cfs 12,589 cf 12.0" Round Culvert n=0,013 L=112.0' S=0.0152 '/' Outflow=3,69 cfs 11,613 cf
Pond 19P: PP-2	Peak Elev=77.51' Storage=944 cf Inflow=1.63 cfs 5,618 cf 8,0" Round Culvert n=0.010 L=305,0' S=0,0200 '/' Outflow=1.28 cfs 5,175 cf
Pond 20P: PP-1	Peak Elev=76.22' Storage=558 cf Inflow=1.03 cfs 3,487 cf 8.0" Round Culvert n=0,010 L=3,0' S=0,1000 '/' Outflow=0,91 cfs 3,181 cf
Pond 22P: PP-3	Peak Elev=72.59' Storage=2,827 cf Inflow=2.46 cfs 8,364 cf 12.0" Round Culvert n=0,013 L=260.0' S=0.0100 '/' Outflow=2,03 cfs 6,333 cf

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 16
Link 3L: POC C	Inflow=11.94 cfs 40,508 cf Primary=11.94 cfs 40,508 cf
Link 4L: POC D	Inflow=2.67 cfs 9,209 cf Primary=2.67 cfs 9,209 cf
Link 5L: POC E	Inflow=0.77 cfs 2,620 cf Primary=0.77 cfs 2,620 cf
Link 6L: POC F	Inflow=4.30 cfs 14,824 cf Primary=4.30 cfs 14,824 cf

Pond 23P: RS-2

Link 1L: POC A

Link 2L: POC B

Total Runoff Area = 408,703 sf Runoff Volume = 212,125 cf Average Runoff Depth = 6.23" 11.94% Pervious = 48,779 sf 88.06% Impervious = 359,924 sf

Peak Elev=73.04' Storage=4,283 cf Inflow=13.46 cfs 45,674 cf 18.0" Round Culvert n=0.013 L=20.0' S=0,0050 '/' Outflow=13.17 cfs 42,255 cf

Inflow=11.60 cfs 39,309 cf Primary=11.60 cfs 39,309 cf

Inflow=29.47 cfs 98,478 cf Primary=29.47 cfs 98,478 cf

Time span=0.00-36.00 hrs, dt=0.01 hrs, 3601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: DA-1A	Runoff Area=22,445 sf 64.51% Impervious Runoff Depth=6.50" Tc=5.0 min CN=92 Runoff=3,76 cfs 12,156 cf
Subcatchment 2S: DA-2A	Runoff Area=9,611 sf 100.00% Impervious Runoff Depth=7.21" Tc=5.0 min CN=98 Runoff=1,67 cfs 5,775 cf
Subcatchment 3S: DA-2B-1	Runoff Area=16,104 sf 65.67% Impervious Runoff Depth=7.09" Tc=5,0 min CN=97 Runoff=2.79 cfs 9,517 cf
Subcatchment 4S: DA-2C	Runoff Area=32,910 sf 90.69% Impervious Runoff Depth=7,09" Tc=5.0 min CN=97 Runoff=5,70 cfs 19,448 cf
Subcatchment 5S: DA-2D	Runoff Area=13,610 sf 96,47% Impervious Runoff Depth=7,09" Tc=5.0 min CN=97 Runoff=2,36 cfs 8,043 cf
Subcatchment 6S: DA-2E	Runoff Area=38,997 sf 98,03% Impervious Runoff Depth=7,21" Tc=5.0 min CN=98 Runoff=6,78 cfs 23,433 cf
Subcatchment 7S: DA-3	Runoff Area=28,009 sf 100.00% Impervious Runoff Depth=7,21" Tc=5.0 min CN=98 Runoff=4,87 cfs 16,830 cf
Subcatchment 8S: DA-4	Runoff Area=77,989 sf 70.01% Impervious Runoff Depth=7.09" Tc=5,0 min CN=97 Runoff=13.52 cfs 46,087 cf
Subcatchment 9S: DA-5A	Runoff Area=17,400 sf 100,00% Impervious Runoff Depth=7,21" Tc=5.0 min CN=98 Runoff=3.03 cfs 10,455 cf
Subcatchment 10S: DA-5B	Runoff Area=5,045 sf 63.13% Impervious Runoff Depth=7.09" Tc=5.0 min CN=97 Runoff=0,87 cfs 2,981 cf
Subcatchment 11S: DA-2B-2	Runoff Area=87,935 sf 96,75% Impervious Runoff Depth=7.09" Tc=5.0 min CN=97 Runoff=15.24 cfs 51,964 cf

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 50-Year Rainfall=7.45" Printed 10/4/2023 Page 18
Subcatchment 12S: DA-1B	Runoff Area=24,237 sf 96.44% Impervious Runoff Depth=7.09" Tc=5.0 min CN=97 Runoff=4.20 cfs 14,323 cf
Subcatchment 13S: DA-1C	Runoff Area=11,957 sf 95.14% Impervious Runoff Depth=7.09" Tc=5.0 min CN=97 Runoff=2.07 cfs 7,066 cf
Subcatchment 14S: DA-1D	Runoff Area=10,615 sf 98.05% Impervious Runoff Depth=7.21" Tc=5.0 min CN=98 Runoff=1.85 cfs 6,378 cf

Subcatchment 15S: DA-1E	Runoff Area=6,714 sf 95.58% Impervious Runoff Depth=7.09" Tc=5,0 min CN=97 Runoff=1.16 cfs 3,968 cf
Subcatchment 16S: DA-1F	Runoff Area=5,125 sf 82.11% Impervious Runoff Depth=6.85" Tc=5.0 min CN=95 Runoff=0.88 cfs 2,927 cf

Pond 17P: RS-1	Peak Elev=76.32' Storage=1,175 cf Inflow=4.20 cfs 14,323 cf 12.0" Round Culvert n=0.013 L=112.0' S=0.0152 '/' Outflow=4.17 cfs 13,347 cf
Pond 19P: PP-2	Peak Elev=77.64' Storage=1,005 cf Inflow=1.85 cfs 6,378 cf 8.0" Round Culvert n=0.010 L=305.0' S=0.0200 // Outflow=1.42 cfs 5,935 cf

Pond 20P: PP-1	Peak Elev=76.30' Storage=583 cf Inflow=1.16 cfs 3,968 cf 8.0" Round Culvert n=0.010 L=3.0' S=0.1000 '/' Outflow=1.02 cfs 3,661 cf
Pond 22P: PP-3	Peak Elev=72.67' Storage=2,902 cf Inflow=2.79 cfs 9,517 cf

	12.0" Round Culvert n=0.013 L=260.0' S=0.0100 '/' Outflow=2.29 cfs 7,485 cf
Pond 23P: RS-2	Peak Elev=73.68' Storage=4,401 cf Inflow=15.24 cfs 51,964 cf

18 18	0" Round Culvert n=0.013 L=20.0' S=0.0050 '/' Outflow=14.81 cfs 48,545 cf

Link 1L: POC A	Inflow=13.11 cfs 45,092 cf
LIIK IE. 100 A	Primary=13.11 cfs 45,092 cf

Link 2L: POC B	Inflow=33.23 cfs 112,729 cf
LIIIR ZE. 1 GG B	Primary=33,23 cfs 112,729 cf

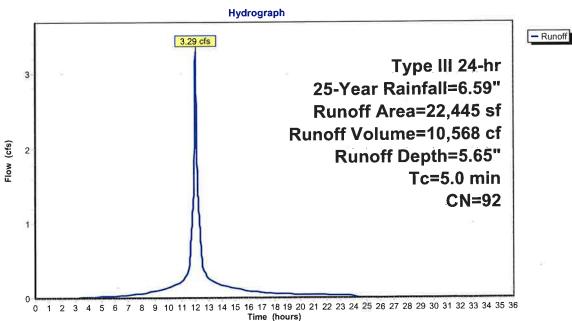
23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC	Type III 24-hr 50-Year Rainfall=7.45" Printed 10/4/2023 Page 19
Link 3L: POC C	Inflow=13,52 cfs 46,087 cf Primary=13,52 cfs 46,087 cf
Link 4L: POC D	Inflow=3.03 cfs 10,455 cf Primary=3.03 cfs 10,455 cf
Link 5L: POC E	Inflow=0.87 cfs 2,981 cf Primary=0.87 cfs 2,981 cf
Link 6L: POC F	Inflow=4.87 cfs 16,830 cf Primary=4.87 cfs 16,830 cf

Total Runoff Area = 408,703 sf Runoff Volume = 241,351 cf Average Runoff Depth = 7.09" 11.94% Pervious = 48,779 sf 88.06% Impervious = 359,924 sf

Summary for Subcatchment 1S: DA-1A

Runoff

3.29 cfs @ 12.07 hrs, Volume=


10,568 cf, Depth= 5.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

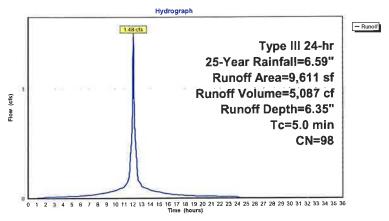
	Area (sf)	CN	Description										
	14,480	98	Paved park	aved parking, HSG C									
	7,965	80	>75% Gras	s cover, Go	od, HSG D								
-	22,445	92	Weighted A	verage									
	7,965	965 35.49% Pervious Area											
	14,480		64.51% lm	pervious Are	ea								
To	Length	Slop	e Velocity	Capacity	Description								
(min)) (feet)	(ft/fi) (ft/sec)	(cfs)									
5.0	1				Direct Entry, 1								

23DA Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 21

Subcatchment 1S: DA-1A

Summary for Subcatchment 2S: DA-2A

Runoff


1.48 cfs @ 12.07 hrs, Volume=

5,087 cf, Depth= 6.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

Α	rea (sf)	CN	Description								
	9,611	98	Paved park	aved parking, HSG D							
	9,611		100.00% Іп	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
5.0					Direct Entry, 1						

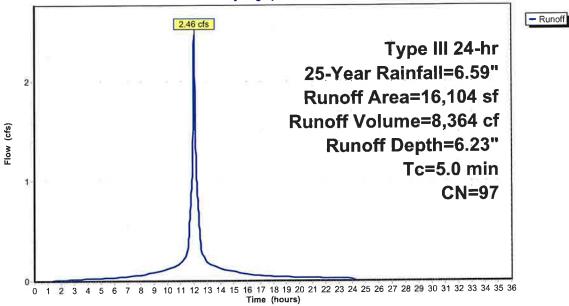
Subcatchment 2S: DA-2A

23DA_Pr-0 Prepared by RVDI Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 23

HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

2.46 cfs @ 12.07 hrs, Volume= Runoff

Summary for Subcatchment 3S: DA-2B-1 8,364 cf, Depth= 6.23"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

Α	rea (sf)	CN	Description	escription									
	10,576	98	Paved park	ved parking, HSG D									
	4,994	96	Gravel surf	avel surface, HSG D									
	534	80	>75% Gras	s cover, Go	od, HSG D								
	16,104	97	Weighted A	Weighted Average									
	5,528		34.33% Pervious Area										
	10,576	576 65.67% Impervious Area											
Тс	Length	Slop			Description								
 (min)	(feet)	(ft/ft) (ft/sec)	(cfs)									
5.0					Direct Entry 1								

Direct Entry, 1

Subcatchment 3S: DA-2B-1

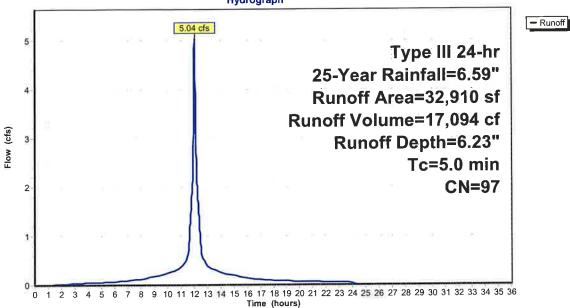
23DA_Pr-0 Prepared by RVDI

Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023

Page 25

Summary for Subcatchment 4S: DA-2C

Runoff


5.04 cfs @ 12.07 hrs, Volume=

17,094 cf, Depth= 6.23"

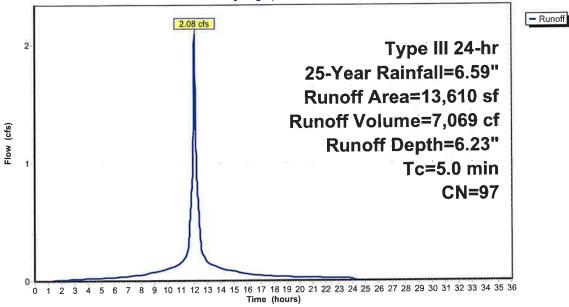
Area (sf) CN	escription									
29,8	47 98	Paved parking, HSG D									
3	99 96										
2,6	64 80	>75% Grass cover, Good, HSG D									
32,9	10 97	Weighted Average									
3,0	63	9.31% Pervious Ārea									
29,8	47	90.69% Impervious Area									
		ope Velocity Capacity Description									
(min)(f	eet) (ft	ft/ft) (ft/sec) (cfs)									
5.0		Direct Entry, 1									

Subcatchment 4S: DA-2C

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 27

Summary for Subcatchment 5S: DA-2D


Runoff = 2.08 cfs @ 12.07 hrs, Volume=

7,069 cf, Depth= 6.23"

Area	(sf)	CN	Description	Description								
13,	130	98	Paved park	aved parking, HSG D								
	480	80	>75% Gras	s cover, Go	od, HSG D							
	610 480 130		Weighted Average 3.53% Pervious Area 96.47% Impervious Area									
	ength (feet)	Slope (ft/ft		Capacity (cfs)	Description							
5.0					Direct Entry, 1							

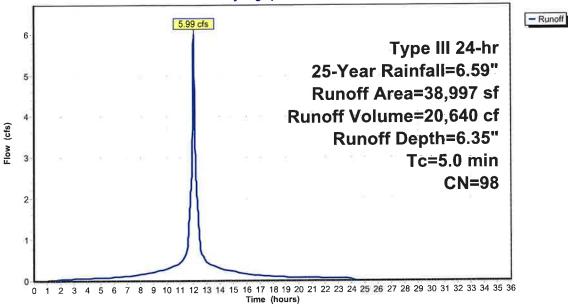
Subcatchment 5S: DA-2D

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023

Page 29

Summary for Subcatchment 6S: DA-2E


5.99 cfs @ 12.07 hrs, Volume= Runoff

20,640 cf, Depth= 6.35"

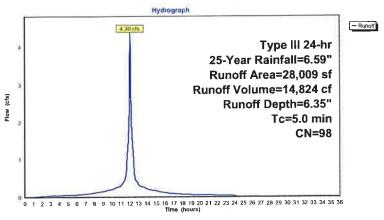
Area	a (sf)	CN	Description				
38	3,227		Paved park				
	770	80	>75% Gras	s cover. Go	od, HSG D		
38	3,997	98	Weighted A	verage			
	770		1.97% Perv	rious Area			
38	3,227		98.03% Impervious Area				
	_ength	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
5.0					Direct Entry, '	I	

Subcatchment 6S: DA-2E

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 31

Summary for Subcatchment 7S: DA-3

Runoff


4.30 cfs @ 12.07 hrs, Volume=

14,824 cf, Depth= 6.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

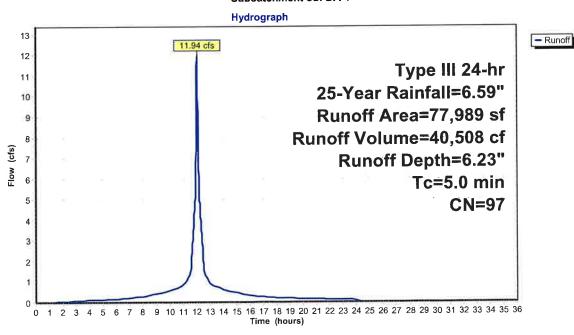
	Area (sf)	CN	Description									
	28,009	98	Paved park	aved parking, HSG D								
	28,009		100.00% In	npervious A	ea							
	c Length			Capacity	Description							
(mii	n) (feet)	(ft/ft) (ft/sec)	(cfs)								
5.	.0				Direct Entry, 1							

Subcatchment 7S: DA-3

Summary for Subcatchment 8S: DA-4

Runoff = 11.94 cfs @ 12.07 hrs, Volume=

40,508 cf, Depth= 6.23"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

Ar	ea (sf)	CN	Description	escription								
	54,599	98	Paved park	aved parking, HSG D								
2	20,893	96	Gravel surf	avel surface, HSG D								
	2,497	80	>75% Gras	% Grass cover, Good, HSG D								
-	77,989	97	Weighted Average									
2	23,390		29.99% Pervious Area									
	54,599	4,599 70.01% Impervious Area										
Tc (min)	Length (feet)	Slop (ft/fr		Capacity (cfs)	Description							
5.0					Direct Entry, 1							

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

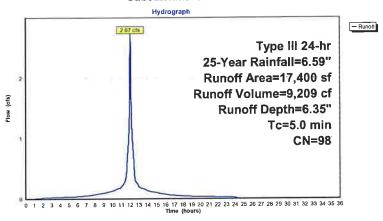
Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 33

Subcatchment 8S: DA-4

HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 9S: DA-5A

Runoff


2.67 cfs @ 12.07 hrs, Volume=

9,209 cf, Depth= 6.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=6.59"

	Area (sf)	CN	Description							
	17,400	98	Paved park	ved parking, HSG D						
	17,400		100.00% In	npervious A	rea					
(mi	Tc Length	Slop (ft/f		Capacity (cfs)	Description					
5	.0				Direct Entry,					

Subcatchment 9S: DA-5A

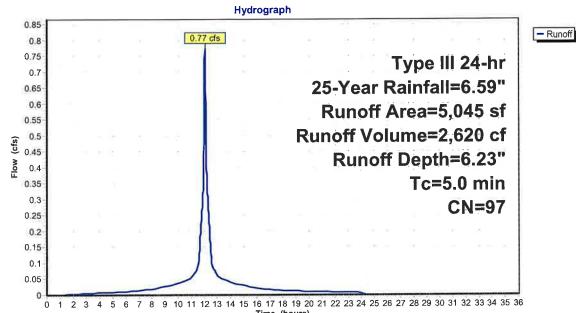
23DA_Pr-0 Prepared by RVDI

HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023

Page 35

Summary for Subcatchment 10S: DA-5B


Runoff

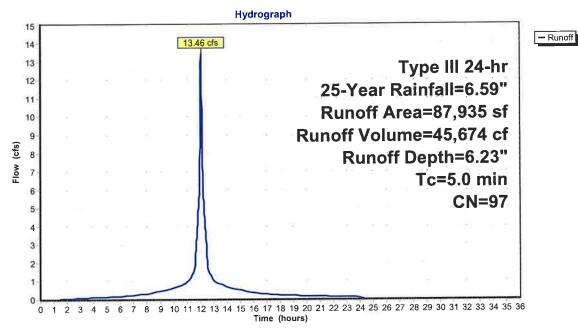
0.77 cfs @ 12.07 hrs, Volume=

2,620 cf, Depth= 6.23"

Ar	ea (sf)	CN	Description			
	3,185	98	Paved park	ing, HSG D		
	1.860	96	Gravel surfa	ace, HSG D		
	5,045 1,860	97	Weighted A 36.87% Per 63.13% Imp	vious Area	2	
	3,185		03.13% 1111	Dervious Are	a	
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description	
5.0					Direct Entry, 1	

Subcatchment 10S: DA-5B

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 37


Summary for Subcatchment 11S: DA-2B-2

13.46 cfs @ 12.07 hrs, Volume= Runoff

45,674 cf, Depth= 6.23"

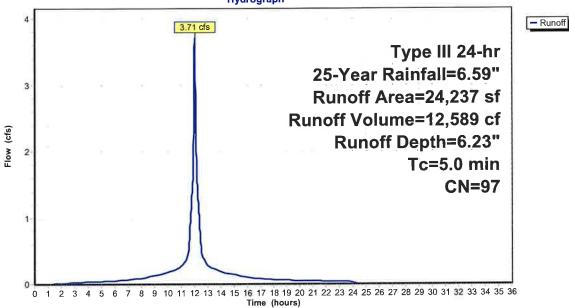
Area (s	f) CN	Description					
85,07	8 98	Paved park	ing, HSG D				
2,85	7 80	>75% Gras	s cover, Go	od, HSG D			
87,93	5 97 Weighted Average						
2,85	2,857 3.25% Pervious Area						
85,07	8	96.75% lmp	pervious Ar	ea			
To Leng (min) (fee			Capacity (cfs)	Description			
5.0				Direct Entry, 1			

Subcatchment 11S: DA-2B-2

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 39

Summary for Subcatchment 12S: DA-1B


Runoff = 3.71 cfs @ 12.07 hrs, Volume=

12,589 cf, Depth= 6.23"

	Area (sf)	CN	Description			
-	23,373	98	Paved park	ing, HSG D		
	864	80	>75% Ġras	s cover, Go	od, HSG D	
	24,237 864 23,373	97	Weighted A 3,56% Perv 96,44% Imp	ious Area	ea	
(п	Tc Length	Slop (ft/f	- ,	Capacity (cfs)	Description	
	5.0		***		Direct Entry, 1	

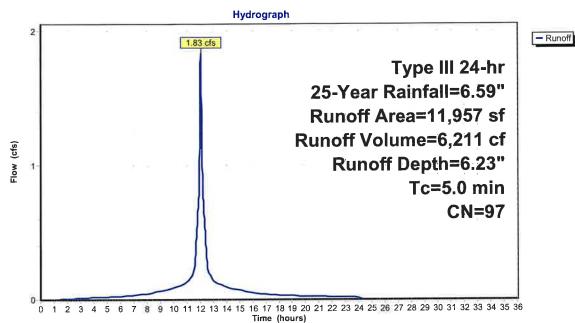
Subcatchment 12S: DA-1B

Hydrograph

23DA_Pr-0

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023

Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC


Page 41

Summary for Subcatchment 13S: DA-1C

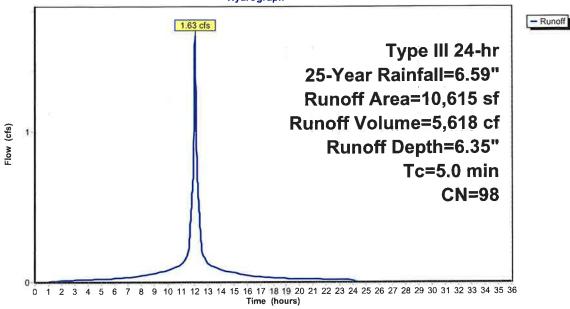
Runoff 1.83 cfs @ 12.07 hrs, Volume= 6,211 cf, Depth= 6.23"

Α	rea (sf)	CN	Description					
	11,376	98	Paved park	ing, HSG D				
	581	80	>75% Gras	s cover, Go	od, HSG D			
	11,957	97	Weighted A	verage				
	581	4.86% Pervious Area						
	11,376		95.14% lmj	pervious Are	ea			
Tc	Length	Slop			Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.0					Direct Entry, 1			

Subcatchment 13S: DA-1C

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 43

Summary for Subcatchment 14S: DA-1D


1.63 cfs @ 12.07 hrs, Volume= Runoff

5,618 cf, Depth= 6.35"

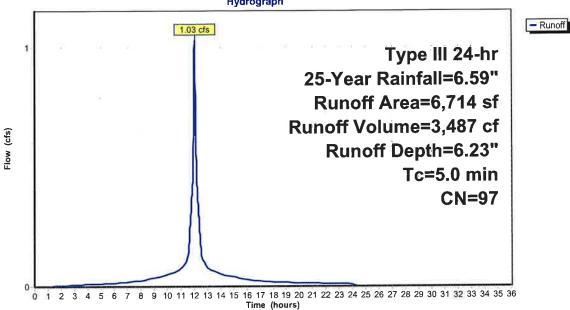
Area	(sf) CN	V De	escription						
10,4	108 98	3 Pa	eved parking, HSG D						
	207 80) >7	5% Grass cover, Good, HSG D						
10,6	315 98	3 W	eighted A	verage					
2	207	1.95% Pervious Area							
10,4	108	98	.05% Imp	ervious Are	ea				
		lope ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,	1			

Subcatchment 14S: DA-1D

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 45

Summary for Subcatchment 15S: DA-1E

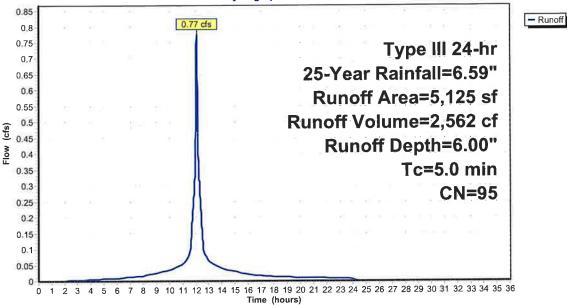

Runoff = 1,03 cfs @ 12.07 hrs, Volume=

3,487 cf, Depth= 6.23"

Α	rea (sf)	CN	Description			
	6,417	98	Paved park	ing, HSG D		
	297	80	>75% Gras	s cover, Go	od, HSG D	
	6,714	97	Weighted A	verage		
	297		4.42% Pen	ious Area		
	6,417		95.58% Im	pervious Are	ea	
Tc	Length	Slop			Description	
(min)	(feet)	(ft/f) (ft/sec)	(cfs)		
5.0					Direct Entry, 1	

Subcatchment 15S: DA-1E

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 47


Summary for Subcatchment 16S: DA-1F

Runoff 0.77 cfs @ 12.07 hrs, Volume= 2,562 cf, Depth= 6.00"

Area	a (sf)	CN	Description								
4	1,208	98	Paved park	ved parking, HSG D							
	917	80	>75% Gras	5% Grass cover, Good, HSG D							
5	5,125	95	Weighted A	verage							
	917		17.89% Per	17.89% Pervious Area							
4	1,208		82.11% lmp	32.11% Impervious Area							
Tc L (min)	ength	Slope (ft/ft		Capacity (cfs)	Description						
5.0		-			Direct Entry, 1						

Subcatchment 16S: DA-1F

Hydrograph

23DA Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 49

Summary for Pond 17P: RS-1

24,237 sf, 96.44% Impervious, Inflow Depth = 6.23" for 25-Year event Inflow Area =

3.71 cfs @ 12.07 hrs, Volume= 3.69 cfs @ 12.08 hrs, Volume= 12,589 cf Inflow

11,613 cf, Atten= 1%, Lag= 0.5 min Outflow

Primary 3.69 cfs @ 12.08 hrs, Volume= 11,613 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 76.05' @ 12.08 hrs Surf Area= 1,121 sf Storage= 1,160 cf

Plug-Flow detention time= 78.5 min calculated for 11,610 cf (92% of inflow) Center-of-Mass det. time= 37.2 min (786.7 - 749.5)

Invert	Avail.Storage	Storage Description
72.00'	457 cf	14.75'W x 38.00'L x 3.21'H Field A
		1,798 cf Overall - 656 cf Embedded = 1,143 cf x 40.0% Voids
72.50'	656 cf	Cultec R-280HD x 15 Inside #1
		Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
		Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
		Row Length Adjustment= +1.00' x 6.07 sf x 3 rows
75.20'	101 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
		1.008 cf Overall x 10.0% Voids
	72.00' 72.50'	72.00' 457 cf 72.50' 656 cf

1,214 cf Total Available Storage

Storage Group A created with Chamber Wizard

Elevation (feet)	Surf.Area	Inc.Store	Cum.Store
	(sq-ft)	(cubic-feet)	(cubic-feet)
75.20	560	0	0
77.00	560	1,008	1,008

Invert Outlet Devices Device Routing **12.0"** Round Culvert L= 112.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 74.60' / 72.90' S= 0.0152 '/' Cc= 0.900 Primary n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.68 cfs @ 12.08 hrs HW=76.05' TW=0.00' (Dynamic Tailwater)
1=Culvert (Inlet Controls 3.68 cfs @ 4.69 fps)

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 51

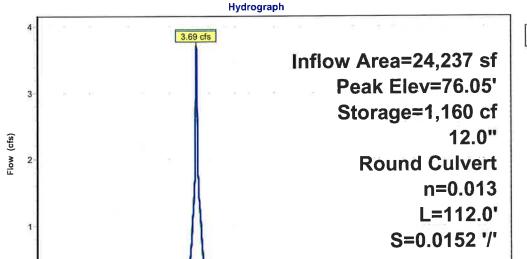
Pond 17P: RS-1 - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)
Effective Size= 46.9"W x 26.0"H => 6.07 sf·x 7.00'L = 42.5 cf
Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
Row Length Adjustment= +1.00' x 6.07 sf x 3 rows

47.0" Wide + 6.0" Spacing = 53.0" C-C Row Spacing

5 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 36.00' Row Length +12.0" End Stone x 2 = 38.00' Base Length 3 Rows x 47.0" Wide + 6.0" Spacing x 2 + 12.0" Side Stone x 2 = 14.75' Base Width 6.0" Base + 26.5" Chamber Height + 6.0" Cover = 3.21' Field Height

15 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 3 Rows = 655.7 cf Chamber Storage


1,798.3 cf Field - 655.7 cf Chambers = 1,142.5 cf Stone x 40.0% Voids = 457.0 cf Stone Storage

Chamber Storage + Stone Storage = 1,112.8 cf = 0.026 af Overall Storage Efficiency = 61.9% Overall System Size = 38.00' x 14.75' x 3.21'

15 Chambers 66.6 cy Field 42.3 cy Stone

Pond 17P: RS-1

Inflow Primary

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 53

Summary for Pond 19P: PP-2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Time (hours)

10,615 sf, 98.05% Impervious, Inflow Depth = 6.35" for 25-Year event Inflow Area =

1.63 cfs @ 12.07 hrs, Volume= 1.28 cfs @ 12.13 hrs, Volume= 5,618 cf Inflow

5,175 cf, Atten= 22%, Lag= 3.5 min Outflow

1.28 cfs @ 12.13 hrs, Volume= 5,175 cf Primary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 77.51' @ 12.13 hrs Surf.Area= 3,150 sf Storage= 944 cf

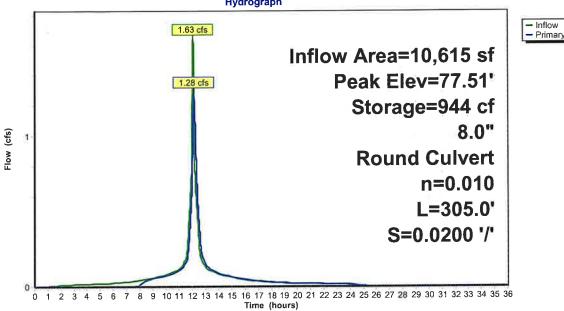
Plug-Flow detention time= 94.8 min calculated for 5,173 cf (92% of inflow)

Center-of-Mass det. time= 52.8 min (795.6 - 742.9)

Volume	Invert	Avail.Storage	Storage Description	
#1	75.90'	724 cf	Custom Stage Data (Prismatic) Listed below (Recalc)	
			1,811 cf Overall x 40.0% Voids	
#2	77.05'	354 cf	Custom Stage Data (Prismatic) Listed below (Recalc)	
			1,181 cf Overall x 30.0% Voids	

1,079 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store (cubic-feet)
(feet)	(sq-ft)	(cubic-feet)	
75.90	1,575	0	0
77.05	1,575	1,811	1,811
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
77.05	1,575	0	0
77.80	1,575	1.181	1.181


Invert Outlet Devices Device Routing Primary

76.60' **8.0" Round Culvert** L= 305.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 76.60' / 70.50' S= 0.0200 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=1.28 cfs @ 12.13 hrs HW=77.51' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.28 cfs @ 3.67 fps)

Pond 19P: PP-2

Hydrograph

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 55

Summary for Pond 20P: PP-1

6,714 sf, 95.58% Impervious, Inflow Depth = 6.23" for 25-Year event Inflow Area =

3,487 cf Inflow

1.03 cfs @ 12.07 hrs, Volume= 0.91 cfs @ 12.11 hrs, Volume= 3,181 cf, Atten= 11%, Lag= 2.3 min Outflow

Primary 0.91 cfs @ 12.11 hrs, Volume= 3.181 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 76.22' @ 12.11 hrs Surf.Area= 2,180 sf Storage= 558 cf

Plug-Flow detention time= 96.0 min calculated for 3,180 cf (91% of inflow) Center-of-Mass det. time= 50.8 min (800.3 - 749.5)

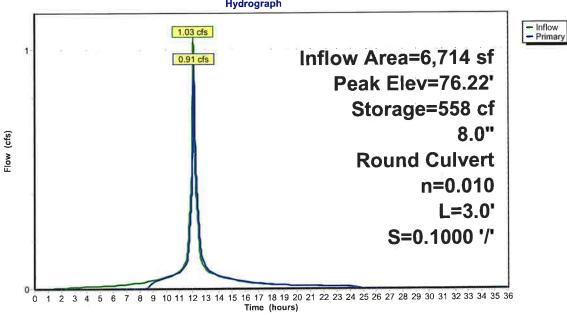
Volume	Invert	Avail.Storage	Storage Description
#1	74.90'	501 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			1,253 cf Overall x 40.0% Voids
#2	76.05	245 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			818 cf Overall x 30.0% Voids
		747 cf	Total Available Storage

Cum.Store (cubic-feet)	Inc.Store (cubic-feet)	Surf.Area (sg-ft)	Elevation (feet)
0	0	1,090	74.90
1,253	1,253	1,090	76.05
Cum.Store (cubic-feet)	Inc.Store (cubic-feet)	Surf Area (sq-ft)	Elevation (feet)
0	0	1.090	76.05

1,090

76.80

Device Routing Invert Outlet Devices 8.0" Round Culvert L= 3.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 75.60' / 75.30' S= 0.1000 '/' Cc= 0.900 75.60 #1 Primary


818

818

Primary OutFlow Max=0.91 cfs @ 12.11 hrs HW=76.22' TW=0.00' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.91 cfs @ 2.69 fps)

Pond 20P: PP-1

Hydrograph

23DA Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 57

Summary for Pond 22P: PP-3

16,104 sf, 65.67% Impervious, Inflow Depth = 6.23" for 25-Year event Inflow Area =

8,364 cf Inflow

2.46 cfs @ 12.07 hrs, Volume= 2.03 cfs @ 12.12 hrs, Volume= 6,333 cf, Atten= 18%, Lag= 3.1 min Outflow

2.03 cfs @ 12.12 hrs, Volume= 6,333 cf Primary

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 72.59' @ 12.12 hrs Surf.Area= 2,530 sf Storage= 2,827 cf

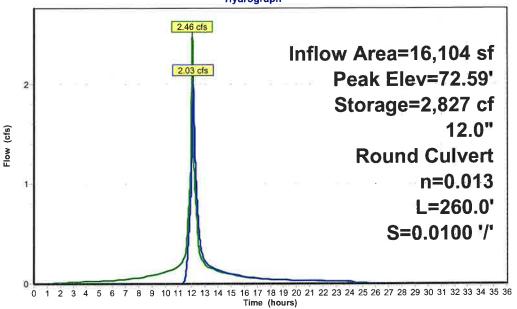
Plug-Flow detention time= 175.8 min calculated for 6,332 cf (76% of inflow) Center-of-Mass det. time= 90.8 min (840.3 - 749.5)

Volume	Invert	Avail.Storage	Storage Description	
#1	69.80'	3,491 cf	Custom Stage Data (Prismatic) Listed below (Recalc)	
			8,729 cf Overall x 40.0% Voids	
#2	73.25	569 cf	Custom Stage Data (Prismatic) Listed below (Recalc)	
			1,898 cf Overall x 30 0% Voids	

4,061 cf Total Available Storage

Elevation	Surf Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
69.80	2,530	0	0
73.25	2,530	8,729	8,729
Elevation	Surf.Area	Inc.Store	Cum.Store
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)

Invert Outlet Devices Device Routing **12.0"** Round Culvert L= 260.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 71.80' / 69.20' S= 0.0100 '/' Cc= 0.900 Primary n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf


- Inflow

Primary

Primary OutFlow Max=2.03 cfs @ 12.12 hrs HW=72.59' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 2.03 cfs @ 3.03 fps)

Pond 22P: PP-3

Hydrograph

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 59

Summary for Pond 23P: RS-2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev= 73.04' @ 12.09 hrs Surf.Area= 3,712 sf Storage= 4,283 cf

Plug-Flow detention time= 79.0~min calculated for 42,243~cf (92% of inflow) Center-of-Mass det. time= 38.8~min (788.3 - 749.5)

Volume	Invert	Avail.Storage	Storage Description	
#1A	67.20'	1,442 cf	41.25'W x 45.00'L x 3.21'H Field A	
			5,955 cf Overall - 2,350 cf Embedded = 3,606 cf x 40.0% Voids	
#2A	67.70'	2,350 cf		
			Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf	
			Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap	
			Row Length Adjustment= +1.00' x 6.07 sf x 9 rows	
#3	70.40'	761 cf	Custom Stage Data (Prismatic) Listed below (Recalc)	
			7,610 cf Overall x 10.0% Voids	
		4,553 cf	Total Available Storage	

Storage Group A created with Chamber Wizard

Cum.Store (cubic-feet)	Inc.Store (cubic-feet)	Surf.Area (sq-ft)	Elevation (feet)
0	0	1,856	70.40
7.610	7.610	1.856	74 50

Device	Routing	Invert	Outlet Devices
#1	Primary		18.0" Round Culvert L= 20.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 69.90' / 69.80' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=13.14 cfs @ 12.09 hrs HW=73.04' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 13.14 cfs @ 7.44 fps)

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 61

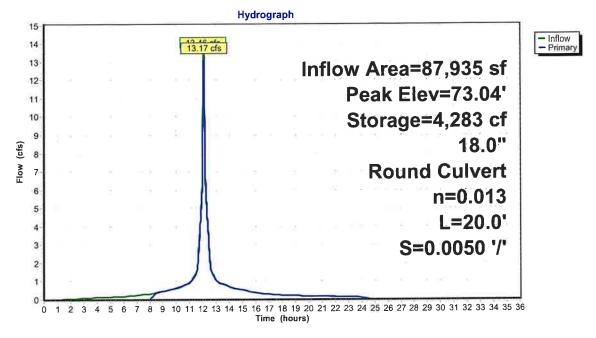
Pond 23P: RS-2 - Chamber Wizard Field A

Chamber Model = Cultec R-280HD (Cultec Recharger® 280HD)
Effective Size= 46.9"W x 26.0"H => 6.07 sf x 7.00'L = 42.5 cf
Overall Size= 47.0"W x 26.5"H x 8.00'L with 1.00' Overlap
Row Length Adjustment= +1.00' x 6.07 sf x 9 rows

47.0" Wide + 6.0" Spacing = 53.0" C-C Row Spacing

6 Chambers/Row x 7.00' Long +1.00' Row Adjustment = 43.00' Row Length +12.0" End Stone x 2 = 45.00' Base Length 9 Rows x 47.0" Wide + 6.0" Spacing x 8 + 12.0" Side Stone x 2 = 41.25' Base Width 6.0" Base + 26.5" Chamber Height + 6.0" Cover = 3.21' Field Height

54 Chambers x 42.5 cf +1.00' Row Adjustment x 6.07 sf x 9 Rows = 2,349.8 cf Chamber Storage


5,955.5 cf Field - 2,349.8 cf Chambers = 3,605.7 cf Stone x 40.0% Voids = 1,442.3 cf Stone Storage

Chamber Storage + Stone Storage = 3,792.0 cf = 0.087 af Overall Storage Efficiency = 63,7% Overall System Size = 45.00' x 41.25' x 3.21'

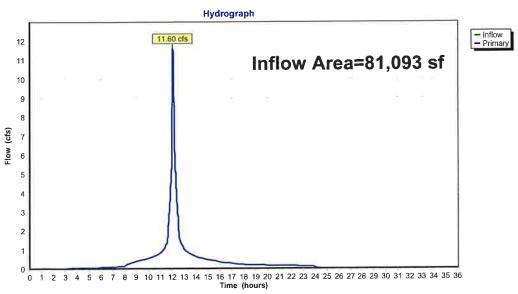
54 Chambers 220.6 cy Field 133.5 cy Stone

Pond 23P: RS-2

23DA_Pr-0
Prepared by RVDI
HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 63

Summary for Link 1L: POC A


 Inflow Area =
 81,093 sf, 86.64% Impervious, Inflow Depth = 5.82" for 25-Year event

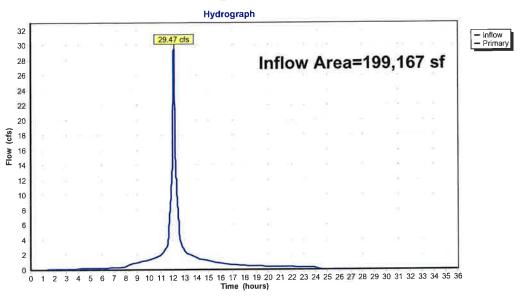
 Inflow =
 11.60 cfs @ 12.08 hrs, Volume=
 39,309 cf

 Primary =
 11.60 cfs @ 12.08 hrs, Volume=
 39,309 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 1L: POC A

Summary for Link 2L: POC B


Inflow Area = 199,167 sf, 93.62% Impervious, Inflow Depth = 5.93" for 25-Year event

29.47 cfs @ 12.08 hrs, Volume= 29.47 cfs @ 12.08 hrs, Volume= 98,478 cf Inflow

98,478 cf, Atten= 0%, Lag= 0.0 min Primary

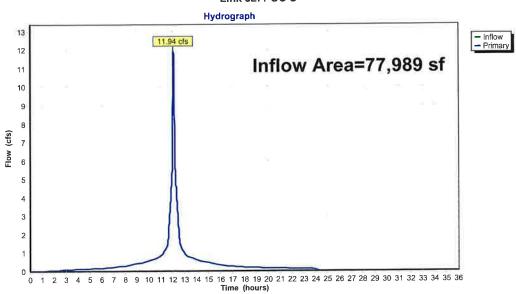
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 2L: POC B

23DA_Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023

Page 65

Summary for Link 3L: POC C

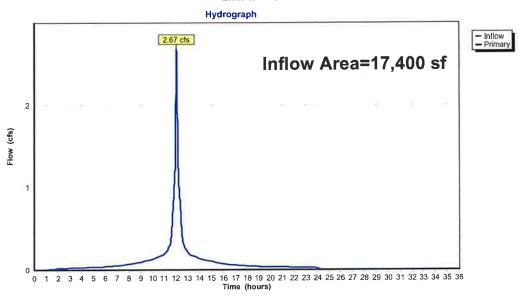

77,989 sf, 70.01% Impervious, Inflow Depth = 6.23" for 25-Year event Inflow Area =

Inflow 11.94 cfs @ 12.07 hrs, Volume= 40,508 cf

11.94 cfs @ 12.07 hrs, Volume= 40,508 cf, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 3L: POC C



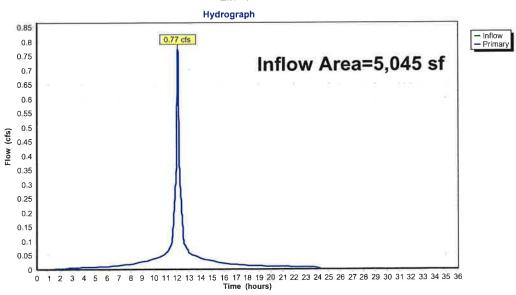
Summary for Link 4L: POC D

17,400 sf,100.00% Impervious, Inflow Depth = 6.35" for 25-Year event Inflow Area = 2.67 cfs @ 12.07 hrs, Volume= 2.67 cfs @ 12.07 hrs, Volume= 9,209 cf 9,209 cf, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 4L: POC D

23DA Pr-0 Prepared by RVDI HydroCAD® 10.00-26 s/n 07356 © 2020 HydroCAD Software Solutions LLC Type III 24-hr 25-Year Rainfall=6.59" Printed 10/4/2023 Page 67

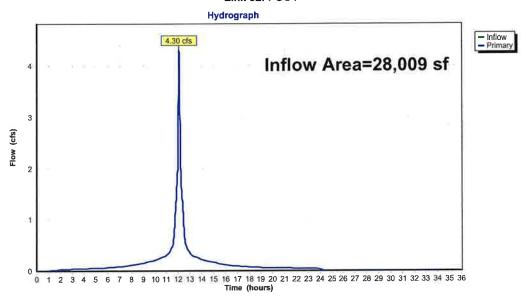

Summary for Link 5L: POC E

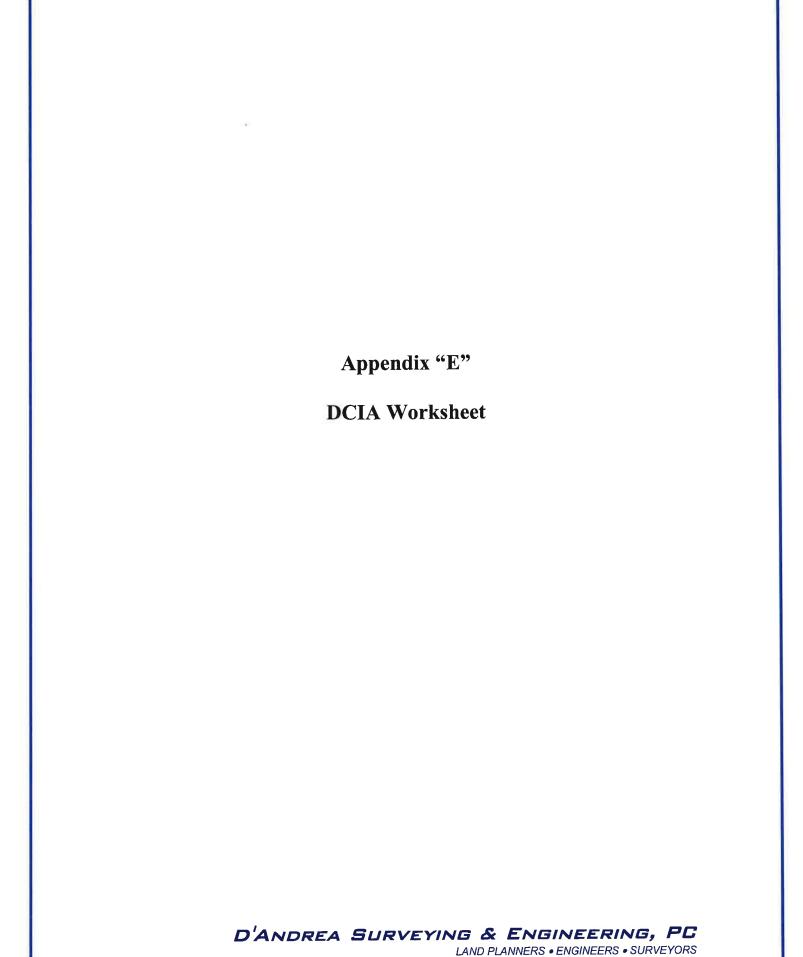
5,045 sf, 63.13% Impervious, Inflow Depth = 6.23" for 25-Year event 0.77 cfs @ 12.07 hrs, Volume= 2,620 cf 0.77 cfs @ 12.07 hrs, Volume= 2,620 cf, Atten= 0%, Lag= 0.0 min Inflow Area = inflow

2,620 cf, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 5L: POC E


Summary for Link 6L: POC F


Inflow Area =

28,009 sf,100.00% Impervious, Inflow Depth = 6.35" for 25-Year event 4.30 cfs @ 12.07 hrs, Volume= 14,824 cf 14,824 cf, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Link 6L: POC F

Directly Connected Impervious Area Tracking Worksheet City of Stamford Drainage Manual

Note to user: complete all cells of this color only, as indicated by section headings

	Part 1: General Information (All Projects)
Project Name	Commercial Development
Project Address	375 Fairfield Avenue
Project Applicant	375 Fairfield Avenue Associates
Title of Plan	Site Plan Review Set
Revision Date of Plan	4-Oct-23
Tax Account Number	001-3193

Part 2: Project Details (All Projects)		
1. What type of development is this? (choose from dropdown)	Redevelopment	
2. What is the total area of the project site?	408,703	ft ²
3. What is the total area of land disturbance for this project?	170,240	ft ²
4. Does project site drain to High Quality Waters, a Direct Waterfront, or within 500 ft. of Tidal Wetlands? (Yes/No)	No	
Does Standard 1 apply based on information above?	Yes	

Part 3: Water Quality Target Total (Only for Standard 1 Projects)					
5. What is the current (pre-development) DCIA for the site?	373,738	ft ²			
6. Will the proposed development increase DCIA (without consideration of proposed stormwater management)? (Yes/No)	No				
7. What is the <u>proposed-development</u> total impervious area for the site?	388,070	ft ²			
Water Quality Volume (WQV) (DAs 1B, 1D, 1E, 2B-1, & 2B-2 Only)	11172.6	ft ³			
Standard 1 requirement	Retain 1/2 WQV on-site				
Required retention volume	5586.3	ft ³			
Provided retention volume for proposed development	7,161.0	ft ³			

Part 4: Proposed DCIA Tracking (Only for Standard 1 Projects)					
Pre-development total impervious area	396,183	ft ²			
Current DCIA	373,738	ft ²			
Proposed-development total impervious area	388,070	ft ²			
Proposed-development DCIA (after stormwater management)	224,779	ft ²			
Net change in DCIA from <u>current</u> to <u>proposed-development</u>	-148,959	ft ²			

Part 5: Post-Development (As-Built Certified) DCIA Tracking (Only for Star	ndard 1 Projects)	
Post-development (per as-built) total impervious area	evi-	ft ²
Post-development (per as-built) DCIA (after stormwater management)		ft ²
Net change in DCIA from <u>current</u> to <u>post-development</u>	and the continue of the contin	ft ²

Certification Statement

I hereby certify that the information contained in this worksheet is true and correct.

<u>um</u> Date <u>l0/4/13</u> Engineer's Signature

Engineer's Seal

Office use only	
Date received	
Application Nr (e.g., ZB, ZBA,	
, ,	
Location	
*Address of Development	375 Fairfield Avenue
Number & Street	
*Stamford, CT ZIP Code	06902
Applicant Information	
*Applicant full name	375 Fairfield Associates
Applicant Company	
*Applicant Street Address	P.O. Box 110422
*Applicant City, State, ZIP	Stamford, CT 06911-0422
*Applicant Email	c/o Agent: WHennessey@carmodylaw.com
*Applicant Phone	c/o Agent: (203) 425-4200
Property Owner Information	
*Is the property owner the same	YES / NO
as the applicant?	
If NO please answer the following	
*Owner full name	
Owner Company	
*Owner Street Address	
*Owner City, State, ZIP	
*Owner Email	
*Owner Phone	
In distance (almost a max)	
Is this (check one)	
the 1 st Sumbission (Zoning Board,	
ZBA or Building Permit	X
application)	
the 2 nd Submission (CO sign-off)	

SCORECARD RATING

Category	Max Points	Points achieved
Building Health	8	0
Energy Use	25	2
Landscaping and Open Space	11	2
Land Use	17	1
Mobility	29	3
Resiliency	11	7
Resource Management	9	0
Urban Design	10	8
Water Use	7	1
TOTAL	127	24

95 or more Points	A+	LEED Platinum
80-94 Points	Α	LEED Gold
65-79 Points	В	LEED Silver
50-64 Points	С	LEED Certified
0-49 Points	NR	

BUILDING HEALTH

ELEMENTS I		CRITERIA	PURPOSE	MAX.	POINTS
LLLIVILIVIS	טו	CRITERIA	FORFOSE	POINTS	ACHIEVED
Indoor air quality	BH1	After construction ends and before occupancy,	Promotes a healthier living/work	1	0
	рпт	conduct indoor air quality testing	space	1	
Low emitting materials		Reduce concentrations of chemical	Limits exposure to		0
	BH2	contaminants from building interior paints and	volatile organic compounds (VOCs),	1	
	DITZ	coatings, interior adhesives and sealants,	which are linked to many short-	•	
		flooring and insulation	and long-term health problems		
Moisture management		Provide heating, ventilating and air conditioning	Limits exposure to mold		0
	вн3	systems and controls designed to limit relative		1	
	DITIS	humidity to 60% or less during all load		•	
		conditions, both occupied and not occupied			
Daylighting	BH4	Provide adequate daylight through windows,	Promotes a space and saves energy	1	0
	DITT	skylights, and other means	healthier living/working		
Window shading	BH5	Provide protection from excessive light exposure	Promotes a space and saves energy	1	0
	DITIS		healthier living/working		
Operable windows		Each regularly occupied space has operable	Increases indoor air quality, access		0
	BH6	windows	to natural light,	1	
			and user comfort		
Active design	BH7	Integration of pathways and stairs within the	Promotes exercise and health	1	0
	D117	built environment in projects with 2 to 4 floors			
Fitness equipment	BH8	Convenient and free access to fitness equipment	Promotes exercise and health	1	0
			TOTALS	8	0

Alternative Path to Compliance

IWBI Well Platinum Rating - 10 Points IWBI Well Gold Rating - 8 Points IWBI Well Silver Rating - 6 Points IWBI Well Bronze Rating - 4 Points

ENERGY USE

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Building efficiency	EU1	Energy Star rating of 50+ (3 points), 75+ (6 points) or 85+ (9 points)	Buildings committed to high-performance goals use	9	0
Efficient appliances	EU2	All appliances are Energy Star	Reduce energy use	1	0
Submetering	EU3	Residential: submetering by unit Commercial/mixed-use: submetering of space to maximum extent—at least one meter per floor, per 10,000 sf. or	Submeters encourage conservation by monitoring and allocating costs to end users	2	1
Cool surfaces	EU4	Achieve threshold percentages of reflectance and/or shade (see "Overview" for details), or green roof	Reflective and shaded exterior surfaces reduce contribution to urban heat island warming	2	0
Exterior lighting	EU5	Exterior lighting is full-cutoff or dark-sky compliant, and automatically turns off when natural light is sufficient	Reduces energy use and light pollution	1	1
Interior lighting	EU6	Interior lighting turns off automatically when not in use (for residential buildings: in common or amenity areas only)	Reduces energy use	1	0
Renewable energy production production OR combined heat and power	EU7	Building incorporates solar photovoltaic, solar thermal, microwind, or other renewable sources to meet at least 10% of the design energy load (3 points), 25% (5 points), or 40% plus (7 points); OR Project will use that captures	producing energy sources (coal, oil, etc.) or reduces enery use	7	0
Passive heating	EU9	Development employs strategies to maximize solar gain in winter and prevent solar gain in summer	Reduces energy use	2	0
			TOTALS	25	2

LANDSCAPING & OPEN SPACE

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Green roof	LA1	Vegetated roof that covers 50%	Reduces the "heat island"		0
		or more of the roof area (also	effect and	2	
		qualifies for EU4 - cool roof)	reduces stormwater runoff		
Tree preservation	LA2	Preservation of 80% or more of	Environmental benefits,		1
		mature trees	reduces energy use,	1	
			enhances property values		
Tree canopy	LA3	At maturity, tree canopy will	Environmental benefits,		0
		cover 50% or more of	reduces the "heat island"	1	
		undeveloped surface (at least	effect		
Additional	LA4	Landscaping that exceeds	Reduces the "heat island"		0
landscaping		required Zoning Regulations by	effect, reduces stormwater	1	
		25% or more	runoff		
Native plants	LA5	Landscaping that is 80% or more	Supports native habitats		1
		native and drought-resistant by		2	
		area of plantings			
Join Stamford	LA6	Add the parcel to the Stamford	Supports native habitats	1	0
Pollinator Pathway		Polinator Pathway		1	
Organic land care	LA7	Signed pledge to manage	Environmental and health		0
		property according to NOFA	benefits	1	
		Standards for organic land care			
New publicly	LA8	Create publically available open	Increases public		0
accessible open		space of 5,000 or more square	open space	2	
space		feet; or exceed PAAS requirement	t	2	
-		by at least 25%			
		-	TOTALS	11	2

LAND USE

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Brownfields	LU1	Redevelopment of brownfield site	Makes use of existing infrastructure, reduces development pressure on undeveloped lands and removes or safely encapsulates contamination	3	0
Redevelopment	LU2	Redevelopment of previously developed sites	Makes use of existing infrastructure and reduces development pressure on undeveloped	1	1
Adaptive reuse	LU3	Adaptive reuse of existing building	Saves resources	2	0
Historic preservation	LU4	Historic preservation	Saves resources	2	0
Mixed-use	LU5	60% or more of ground floor area on retail streets contain active uses at the street level (2 Points) Primary entrances with 1/4 mile of at least three neighborhood	Mixes housing, work and services to reduce transportation needs and promotes constant activity at street level Services within walking distance reduce transportation needs	4	0
Transit-supportive density	LU6	Residential: 50 or more dwelling units per acre Commercial/mixed use: FAR of 3.0 or greater Within 1/2 mile of Stamford Transportation Center: 60 or more dwelling units per acre or FAR of 0.8 or greater	Higher density neighborhoods will result in more riders; this enables more frequent transit service	5	0
			TOTALS	17	1

MOBILITY

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Reduce single occupancy	M1	Submit Parking and	Reduces carbon	2	0
vehicle travel		Transportation Demand	emissions and		
		Management plan (PTDM) that	pollutants by reducing		
		reduces vehicle trips 20% from	travel to and from a		
Transit Score	M2	Transit Score 50-69 1 Point	Reduces carbon	3	0
		Transit Score 70-89 2 Points	emmissions		
		Transit Score 90+ 3 Points	- ·		
Incentivize transit use	M3	Participate in TransitChek or	Reduces car	2	0
II 6		similar program	dependency		
Walk Score	M4	Walk Score 50-69 1 Point	Reduces car	3	2
		Walk Score 70-89 2 Points	dependency		2
Diles Coons	N 4 F	Walk Score 90+ 3 Points	Dadwara and	2	
Bike Score	M5	Transit Score 50-69 1 Point	Reduces car	3	1
		Transit Score 70-89 2 Points	dependency		1
Car share	M6	Transit Score 90+ 3 Points		4	0
Car snare	IVIO	On-site car-sharing program (such	Provides flexibility to	4	U
		as ZipCar) at rate of at least 2 cars			
		per 100 dwelling units (residential)	car households,		
		or 2 car per 100 parking spaces	•		
		(commercial) (2 points). Exclusive	minimizing business fleets		
		use of low or zero emission	neets		
Shared Parking	M7	vehicles for car share (2 points) At least 10% reduction in total	Maximizes use of	3	
Silaieu Faikilig	1717	parking needs due	parking facilities	3	0
Parking availability	M8	Provided parking is no more than	parking racinties	2	0
Turking availability	1410	105% of minimum required		2	Ü
		parking (1 point) OR approved			
		parking (1 point) On approved parking reduction per Zoning (2			
Unbundled parking fees	M9	Residential: parking spaces sold or	Fncourages	2	0
onbanaica parking ices	1413	rented separately from dwelling	households to reduce	_	Ü
		units Commercial:	vehicle ownership		
		daily or monthly end-user parking	venicle ownership		
Electric vehicles	M10	Exceed zoning requirement for EV	Encourages use of	2	
	•	parking and charging by at least	zero-emission electric		
		50%	vehicles		
		36/0	vermoles		0
Contributions to	M11	Development provides \$50,000 to		3	0
transportation		City transportation infrastructure			
infrastructure		improvements 1 point			
		\$100,000 - 2 points			
		\$200,000 - 3 points			
		<u> </u>	TOTALS	29	3

RESILIENCY

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Floodplain	R1	Development is outside of the 100-year floodplain (1 point) Development is outside of the 500-year floodplain (3 points)	Makes buildings more resilient to flooding	3	3
Flood resiliency	R2	Structure(s) is elevated 2 feet above base flood elevation, and mechanical systems are on top floor and/or 2 feet above base	Makes buildings more resilient to flooding	2	2
Building resiliency	R3	Structure(s) is equipped with back-up generators or renewable systems, such as solar panels, for core building functions (light, heat,	•	3	0
Sea level rise	R4	Development is outside of the projected 2085 sea level rise areas	Reduces future flood risk	2	2
Emergency plan	R5	Emergency preparation and continuation of operations plan	Promotes safety and preserves building functions	1	0
			TOTALS	11	7

RESOURCE MANAGEMENT

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Construction and	RM1	50% of demolition waste by	Preserves natural		0
demolition debris		weight was recycled (2	resources, saves energy,	3	
		points)	reduces greenhouse gas	3	
		50% of construction waste	production, saves money,		
Recycling	RM2	Compliant recycling system	Preserves natural		
		that includes collection of	resources, saves energy,	1	0
		electronics and textiles	reduces greenhouse gas	-	U
			production, saves money,		
Organic waste	RM3	Organic waste is collected	Reduces the waste stream		0
		separately, and composted	and creates compost		
		either on- or off-site			
		On-site food waste		1	
		dehydrator or on-site			
		aerobic digester			
Reusable materials	RM4	Dishwashing facility and	Reduces solid waste		0
		collection station for used			
		utensils sized to		1	
		accommodate the building's			
		population capacity			
Sustainable Building	RM5			3	0
Materials				3	
			TOTALS	9	0

URBAN DESIGN

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Block size	UD1	Public street or public	Small blocks enable shorter		0
		pedestrian walkway at	walking distances between	1	
		no less than 400-foot	destinations and promote	-	
		intervals	walking		
Minimal visual	UD2	Garage wrapped by other			0
impact of parking		uses at the pedestrian			
		level for at least 80% of	Visible parking lots deaden		
		garage frontage	street life and discourage	1	
		Surface spaces are	walking	-	
		blocked from view by	waiking		
		structures along frontage			
		of main entrance			
Building orientation	UD3	Principle functional	Main entrance at street		1
		entrance opens to	promotes frequent	1	
		sidewalk adjacent to	pedestrian trips to nearby	_	
		public street	destinations and transit use		
Building façade	UD4	Building entrances are	Creates increased activity at		3
		no more than 100 feet	the street and visual interest		
		apart, and mass of		3	
		building is broken up			
		vertically and/or			
Building materials	UD5	No use of EIFS, vinyl, or	High quality building		3
		aluminum in façade	materials improve the	3	
			pedestrian environment		
Building proximity	UD6	Front façade built to	Creates increased activity at		
		minimum allowed	the street and visual integrity	1	1
		setback line			
			TOTAL	10	8

WATER USE

ELEMENTS	ID	CRITERIA	PURPOSE	MAX. POINTS	POINTS ACHIEVED
Indoor water	W1	All fixtures are EPA WaterSense	Reduces use of		
management		rated (1 point)	treated potable water		
		Development uses greywater for		3	1
		irrigation and/or cooling towers			
		(2 points)			
Outdoor water	W2	Landscape irrigation systems are	Reduces use of	1	0
management		EPA WaterSense rated	treated potable water	-	U
Stormwater	W3	Exceed requirements of Stamford	Reduces amount of		0
management		Drainage Manual for stormwater	stormwater and		
		retention by at least 20%	associated pollutants	3	
			draining into the		
			municipal system		
			TOTALS	7	1

<u>(/</u>)

375 Fairfield Avenue

Stamford (/CT/Stamford), Connecticut, 06901

Commute to **Downtown Stamford (/compare#edit-commutes)**

5 min

22 min

9 min

Favorite

Мар

Nearby Stamford Apartments on Redfin (https://www.redfin.com/city/18605/CT/Stamford/apartments-for-rent)

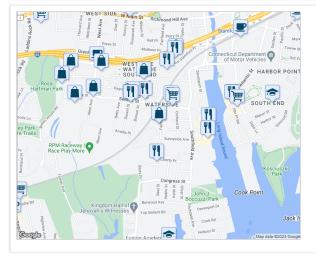
Looking for a home for sale in Stamford? (https://www.redfin.com/city/18605/CT/Stamford)

31 min

Very Walkable

Most errands can be accomplished on foot.

Some Transit


A few nearby public transportation options.

Bikeable

Some bike infrastructure.

About your score

About this Location

1 of 3 9/12/2023, 12:04 PM

William J. Hennessey

Partner

Phone: 203.425.4200 Fax: 203.325.8608

WHennessey@carmodylaw.com

1055 Washington Blvd. 4th Floor Stamford, CT 06901

October 20, 2023

VIA HAND & ELECTRONIC DELIVERY

Ms. Lindsey Cohen
Associate Planner, Land Use Bureau
City of Stamford
888 Washington Boulevard
Stamford, CT 06901
LCohen@StamfordCT.gov

Re: Request to be Heard by Planning Board Site Plan and Special Permit Application 375 Fairfield Avenue, Stamford, CT (Parcel ID 001-3193) 375 Fairfield Avenue Associates

Dear Ms. Cohen:

Our firm represents 375 Fairfield Avenue Associates (the "Applicant"), the owner of 375 Fairfield Avenue, Stamford, CT (the "Property"). The Property is located in the General Industrial (M-G) zone and Master Plan Category 13 (Industrial – General). It is 9.38± acres and improved with eight (8) buildings with a total of 176,714± sf of floor area.

The Applicant proposes to construct two (2) new warehouse/flex industrial/commercial buildings on the Property. Proposed Building A will consist of three (3) stories and contain approximately 54,156± square feet of warehouse/flex industrial/commercial space. Approximately 1,044± sf of additional floor area will be built to accommodate a fast casual food service tenant that is complementary to the anticipated use. Proposed Building B will consist of a one (1) story, including an optional mezzanine, and contain approximately 39,980± square feet of warehouse/flex industrial/commercial space. To facilitate this proposal, the Applicants request from the Zoning Board (1) site plan approval and (2) special permit approval of a large scale development.

Enclosed please find additional copies of the following application materials to provide to the Planning Board:

- Eight (8) copies of the following application forms and associated schedules:
 - o Application for Site Plan Approval;
 - o Application for Special Permit Approval;
 - Schedule A List of Plans;
 - Schedule B Project Narrative;
 - Schedule C Statement of Findings;
 - Schedule D Property Description;
 - Schedule E Zoning Data Chart; and

- Schedule F Existing Zoning Map and Aerial Photo of Property;
- Eight (8) reduced-size copies of the following plans:
 - o Architectural Plans prepared by Jason Little Architects, PLLC, dated October 4, 2023, with the plan titles listed on Schedule A;
 - Civil Plans prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, with the plan titles listed on Schedule A;
 - Zoning Location Survey prepared by D'Andrea Surveying & Engineering, P.C., dated
 October 4, 2023, entitled "Zoning Location Survey;"
 - o Average Grade Worksheet prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, with the plan titles listed on Schedule A; and
 - Landscape Plan prepared by Environmental Land Solutions, LLC, dated October 9,
 2023, with the plan titles listed on Schedule A.

I have also submitted electronic copies of the following materials:

- Drainage Study prepared by D'Andrea Surveying & Engineering, P.C., dated October 4, 2023, entitled "Drainage Summary Report;"
- Traffic Impact Study prepared by SLR International Corporation, dated October 20, 2023, entitled "Traffic Impact Study;" and
- The first submission of the Stamford Sustainability Scorecard.

We look forward to advice as to when the Planning Board will consider this proposal. At that time, I kindly ask that members of our development team and I be given an opportunity to briefly describe the proposal. Please contact me should you have any questions. As always, thank you for your time and attention regarding this matter.

Sincerely,

William J. Hennessey, Jr.

Enclosures.

cc: R. Blessing
375 Fairfield Avenue Associates
Jason Little Architects, PLLC
D'Andrea Surveying & Engineering, P.C.
Environmental Land Solutions, LLC
SLR International Corporation

¹A Parking and Traffic Demand Management Plan prepared by SLR International Corporation will be provided under separate cover.

SLR International Corporation

195 Church Street, 7th Floor, New Haven, Connecticut, 06510

October 20, 2023

Attention: Mr. Jeff Goldblum SWC Office Furniture Outlet, Inc. 375 Fairfield Avenue Associates Stamford, CT 06902

SLR Project No.: 141.21576.00001

RE: Traffic Impact Study 375 Fairfield Avenue

SLR International Corporation (SLR) has prepared this study to evaluate the traffic-related impacts of the proposed warehouse, flex-industrial, and commercial facility to be located at 375 Fairfield Avenue in Stamford, Connecticut. A location map of the study area is provided in **Figure 1**. Two new buildings are proposed as part of the proposed development.

This Traffic Impact Study includes a summary of existing and proposed roadway and traffic conditions, estimation of site-generated traffic volumes, and assessment of future traffic operations. For this study, the following intersections were evaluated during the weekday morning and afternoon peak periods:

- 1. Selleck Street at Fairfield Avenue
- 2. North Site Driveway at Fairfield Avenue
- South Site Driveway at Fairfield Avenue
- 4. Congress Street at Fairfield Avenue

Existing Conditions

The study area information discussed in this section includes existing roadway characteristics, speed limit, roadway functional classification, Connecticut Crash Data Repository crash history, and traffic counts.

Roadway Network

Fairfield Avenue is a major collector with a speed limit of 25 miles per hour (mph). The area around the Fairfield Avenue has multiple intersecting side streets and a mixture of residential, commercial, and industrial land uses. There is a sidewalk on the west side of Fairfield Avenue. To the north, Fairfield Avenue intersects with Selleck Street, a minor arterial with a speed limit of 25 mph. This intersection is signalized. To the south Fairfield Avenue intersects with Congress Street, which also has a speed limit of 25 mph. This intersection is under all-way stop control. Current access to building 1 (375 Fairfield Avenue) is currently available via two driveways on the north and south sides of the building. There are several additional driveways to six fenced in parking areas north of building 1, where the proposed building A would be located. In addition to building 1, the southern driveway also provides access to several mixed industrial/warehouse

buildings. Proposed building B will be added to this mix of buildings. Directly adjacent to this driveway is a driveway to another multi-tenanted industrial area.

Crash Data Summary

Crash data was obtained from the Connecticut Crash Data Repository for the most recent 5-year period (2018 to 2022) for the study intersections, as summarized in **Table 1**. In this 5-year period, the majority of collisions resulted in property damage only at all study intersections.

Table 1: Crash Data Summary

	Study Intersection							
Criteria	Selleck Street at Fairfield Avenue	North Site Driveway at Fairfield Avenue	South Site Driveway at Fairfield Avenue	Congress Street at Fairfield Avenue				
Type of Collision								
Angle	0	0	0	1				
Head-on	0	0	0	0				
Rear-End	5	0	1	0				
Sideswipe, Same Direction	0	1	0	0				
Sideswipe, Opposite Direction	0	0	0	0				
Non-motorist	0	0	0	0				
Single Vehicle	0	0	0	0				
Other/Unknown	0	0	0	0				
Total	5	1	1	1				
Co	Ilision Severit	y						
Suspected Serious Injury	0	0	0	0				
Suspected Minor Injury	1	0	0	0				
Possible Injury	0	0	0	0				
Property Damage Only	4	1	1	1				
Unknown	0	0	0	0				
Total	5	1	1	1				

Source: Connecticut Crash Data Repository 2018 through 2022.

Turning Movement Counts

SLR International Corporation (SLR) conducted turning movement counts during the weekday afternoon peak period of 4 pm to 6 pm at the intersections of Selleck Street at Fairfield Avenue and Congress Street at Fairfield Avenue on Wednesday October 26, 2022. To supplement these counts turning movement counts were collected during the morning peak period of 7 am to 9 am at all study intersections and during the afternoon peak period of 4 pm to 6 pm at the site driveways. The observed peak hours were 7:30 am to 8:30 am in the weekday morning peak period and 5:00 pm to 6:00 pm in the weekday afternoon peak period. The

October 20, 2023

SLR Project No.: 141.21576.00001

October 20, 2023 SLR Project No.: 141.21576.00001

existing/baseline peak-hour traffic volumes are shown on Figures 2 & 3. Complete turning movement counts can be found in **Appendix A**.

Sight Lines

Intersection Sight Distance (ISD) was measured at the site driveways in accordance with criteria set forth in the CTDOT Highway Design Manual. The proposed project will eliminate five of the nine existing curb cuts and rebuild the remaining four curb cuts. All driveways are two-way and under stop-control and the Fairfield Avenue approaches are free.

ISD accounts for a driver's ability to identify an appropriate gap in oncoming traffic. The length of the gap, which is dependent on speed of approaching traffic and number of lanes a motorist needs to cross to make a turn, should allow a vehicle to safely turn without necessitating a significant change in the speed of vehicles already traveling on the roadway. ISD is measured using a line of sight across the corners of the intersection.

ISD measurements were taken at the existing driveway locations and the location of the proposed driveway. For a road with a speed limit of 25 miles per hour the CTDOT Highway Design Manual recommends a sight line of at least 280 feet. Sight lines are clear well beyond the recommended 280 feet at all three site driveways. It should be noted that vegetation may partially obstruct sightlines looking north (left) from the southernmost driveway. This observation was made assuming the vehicle exiting the site driveway would be 15 feet from the edge of the travel lane. When the sight distance was measured assuming the vehicle was closer to the edge of the travel lane, in front of the shrubs, the sight line was clear well beyond the recommended 280 feet. It is therefore recommended that all vegetation is trimmed and maintained as necessary to assure adequate visibility.

Site Development

As stated previously, the proposed project includes two new buildings as part of the development. The site-generated peak-hour trips associated with this development were estimated using statistical data published by the latest edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. Table 2 summarizes the site-generated traffic estimated for the proposed buildings at 375 Fairfield Avenue during the weekday morning and afternoon peak hours.

Table 2: Trip Generation Summary

Туре	LISA	ITE Land Use Code	Size	AM	AM Peak Hour		PM Peak Hour		
			Size	In	Out	Total	In	Out	Total
Dropood	Manufacturing	140	54,156 SF	32	11	43	18	25	43
Proposed Building A	Fast Casual Restaurant	930	1,044 SF	4	2	6	12	7	19
Proposed Building B	Manufacturing	140	37,020 SF	22	8	30	12	18	30
		TOTAL	92,220 SF	58	21	79	42	50	92

Source: Trip Generation, 11th Edition, Institute of Transportation Engineers

As shown in Table 2, a total of 79 vehicle trips are estimated to be generated by the proposed development during the weekday AM peak hour (58 vehicles entering and 21 vehicles exiting), and a total of 92 vehicle trips are estimated to be generated by the proposed development

during the weekday PM peak hour (42 vehicles entering and 50 vehicles exiting).

Site Development Trip Distribution

The distribution of the site-generated traffic was estimated based on review of the roadway traffic patterns in the vicinity of the site, as well as the number of trips anticipated per building. **Figure 4** illustrates the distribution for the proposed site-generated traffic of building A through the study area, and **Figure 5** illustrates the distribution for the proposed site-generated traffic of building B through the study area. Based on the proposed development trip generation and trip distribution, the proposed development site-generated trips were assigned to the study area intersections. **Figure 6** and **Figure 7** display the resulting proposed development trip assignment.

Background Conditions

The background traffic scenario is reflective of Future Conditions if the proposed development was not built. Background Conditions include traffic associated with other nearby, expected, upcoming developments, as well as traffic volumes adjusted using a calculated annual growth rate. Currently, there is an ice-skating rink approved for construction within the study area. Trips generated by the ice-skating rink were estimated using the statistical data published by the latest edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. **Table 3** summarizes the site-generated traffic estimated for the background development during the weekday afternoon peak hour. There is no statistical data published by ITE for ice skating rinks during the weekday morning peak hour. To be conservative, the estimated background trip generation for the weekday afternoon peak hour was utilized during the morning peak hour as well.

Table 3: Background Trip Generation Summary

Туре	Use	ITE Land Use Code	Size	PI	M Peak Hour	
			(Number of Rinks)	In	Out	Total
Background	Ice Skating Rink	465	1	28	17	45

Source: Trip Generation, 11th Edition, Institute of Transportation Engineers

Background development trips are added to future traffic volumes to represent the no-build future condition. To calculate future (2024) traffic volumes, an annual growth rate of 0.75% was applied to the collected traffic volumes at the advice of the Connecticut Department of Transportation (CTDOT). The Background (2024) Conditions peak-hour traffic volumes are shown in **Figure 8** and **Figure 9**.

Intersection Capacity Analysis - Background Conditions

Intersection capacity analysis was performed at the study intersections under Background Conditions to evaluate the intersection's ability to process traffic volumes. Intersection capacity results are expressed as a level of service (LOS) letter. LOS is used to provide a qualitative evaluation of the efficiency of operations of an intersection in terms of delay and inconvenience

October 20, 2023

SLR Project No.: 141.21576.00001

October 20, 2023 SLR Project No.: 141.21576.00001

based on certain quantitative calculations. LOS A describes operations with very low average control delay per vehicle while LOS F describes operations with long average delays. The study intersections were evaluated using Synchro 11 (Trafficware) traffic analysis software package.

Table 4 summarizes the capacity analysis findings under Future (2024) Conditions for weekday morning and weekday afternoon peak hours. The Synchro analysis worksheets are included in Appendix B.

Combined Conditions

The combined traffic scenario is reflective of future (2024) conditions once the proposed development is opened. Future (2024) conditions peak-hour traffic volumes were estimated by adding the calculated development trip assignment (shown on Figures 6 and 7) to the Background Conditions traffic volumes (shown on Figures 8 and 9). The resultant Combined Conditions peak-hour traffic volumes are shown on Figure 10 and Figure 11.

Intersection Capacity Analysis – Combined Conditions

Intersection capacity analysis was performed at the study intersections under the Combined Conditions to evaluate the intersection's ability to process traffic volumes after the proposed development is built. These evaluations were used to determine possible traffic impacts from the proposed expansion based on a comparison of background and future traffic operations. **Table 4** summarizes the capacity analysis output under future conditions for weekday morning and weekday afternoon peak hours. The Synchro analysis worksheets are included in Appendix B.

Table 4: Capacity Analysis Summary Future (2024) Conditions

	Level of Service						
Intersection/Lane Group	Morning P	eak Hour	Afternoon Peak Hour				
	Background	Combined	Background	Combined			
Selleck Street at Fairfield Avenue							
Eastbound Though/Right	А	Α	А	А			
Westbound Left/Through	С	С	В	В			
Northbound Left/Right	С	С	В	В			
Overall	С	С	В	Α			
Building A Site Driveway at Fairfield Avenue							
Eastbound Left/Right	-	В	-	В			
Northbound Left	-	Α	-	Α			
Building 1 Site Driveway at Fairfield Avenue							
Eastbound Left/Right	А	В	В	В			
Northbound Left	А	А	А	Α			
Building B Site Driveway at Fairfield Avenue							
Eastbound Left/Right	В	В	В	В			
Northbound Left	А	А	А	Α			

Notes: LOS calculations were performed using Synchro 11

As shown in Table 4, it is expected that all of the approaches at all of the study intersections will continue to operate at a LOS of C or better and none of the existing LOSs will be diminished.

Access and Circulation

As part of the proposed site expansion, five existing curb cuts will be eliminated, and four curb cuts will be rebuilt. Two of the driveways to be rebuilt will provide access to the building A parking area. Both site driveways provide entry and exit access for passenger cars, single-unit trucks, and fire trucks. Tractor-trailers and semi-trailers will travel to and from the site via Selleck Street to the north. These trucks will enter the building A parking area via the north driveway, back into the building A loading area, and exit through the south driveway.

One of the driveways to be rebuilt will provide access to the building B parking lot. All vehicles can enter and exit the parking area through this driveway. Tractor-trailers and semi-trailers will utilize the drive aisle between building B and building 1 and pull behind building 1 to back into the building B loading area. Passenger cars, single-unit trucks, and fire trucks can circulate throughout the building B parking area. Directly adjacent to the existing driveway at this location is a driveway to another multi-tenanted industrial area. The proposed geometry separates these driveways to improve site access and internal circulation for both facilities.

Conclusions and Recommendations

This traffic impact study was conducted to evaluate the impact of the proposed project on the adjacent roadway network and study intersections. The results of this assessment indicate that the trips generated by the proposed development will have minimal impact on the surrounding roadway network traffic flows. It is recommended that clearing of vegetation be done as necessary to maintain a clear sightline adjacent to the site driveways, particularly looking left from the southernmost site driveway.

The proposed project will eliminate five of the nine existing curb cuts and rebuild the remaining four curb cuts into safer, truck-accessible driveways with site lines exceeding the minimum standards. The proposed site plan also organizes the internal vehicle circulation and parking within the site. Overall, the proposed site plan improvements to site access and internal circulation will be safer and more practical.

October 20, 2023

SLR Project No.: 141.21576.00001

October 20, 2023 SLR Project No.: 141.21576.00001

We hope this report is useful to you and the City of Stamford. If you have any questions or need anything further, please do not hesitate to contact the undersigned.

Regards,

SLR International Corporation

DilA Sull.

David G. Sullivan, PE

U.S. Manager of Traffic & Transportation Planning

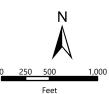
dsullivan@slrconsulting.com

Kimberly Guthrie

Project Transportation Engineer

kguthrie@slrconsulting.com

Kiny Giti

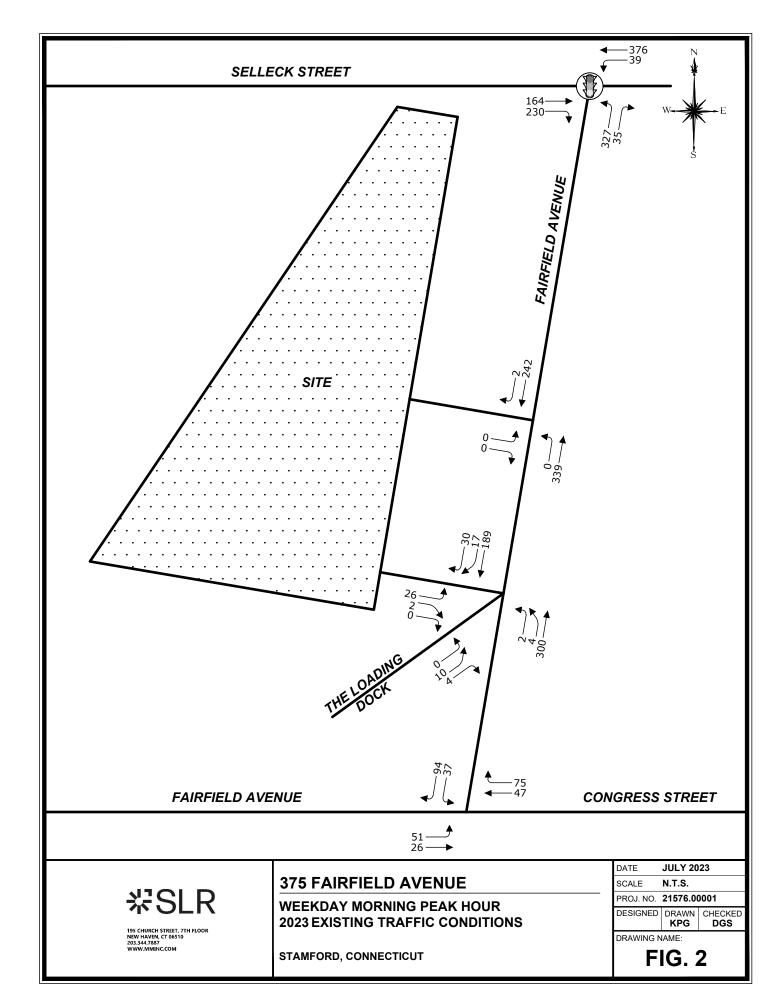

袋SLR

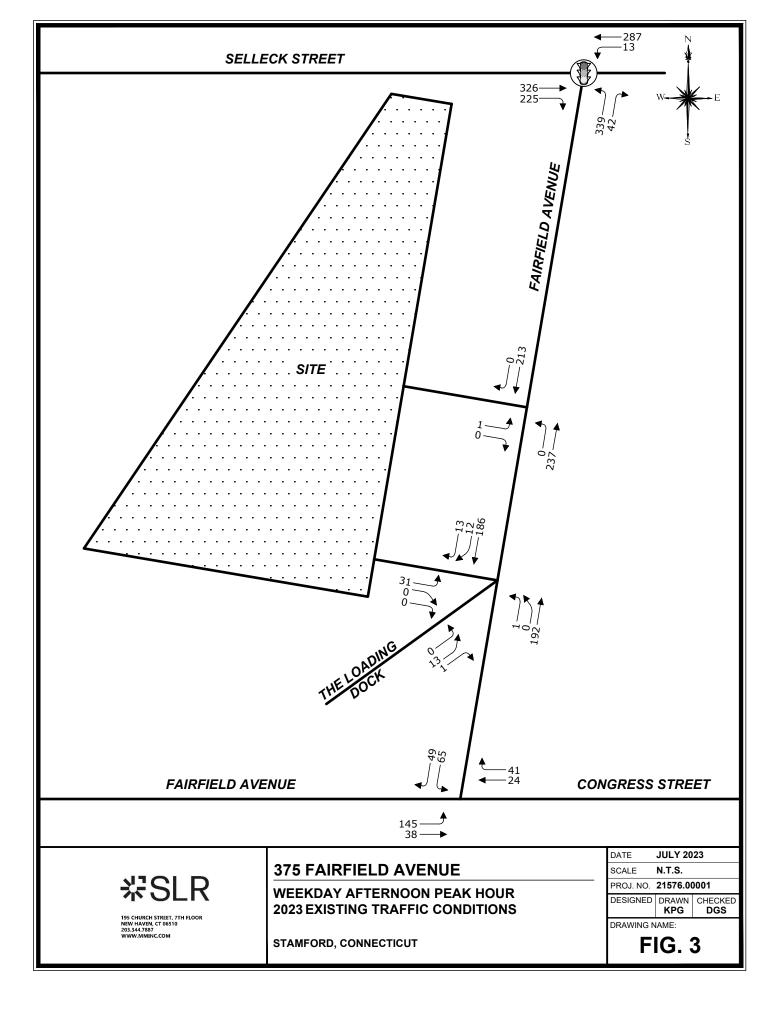
195 CHURCH STREET 7TH FLOOR NEW HAVEN, CT 06511 203.344.7887

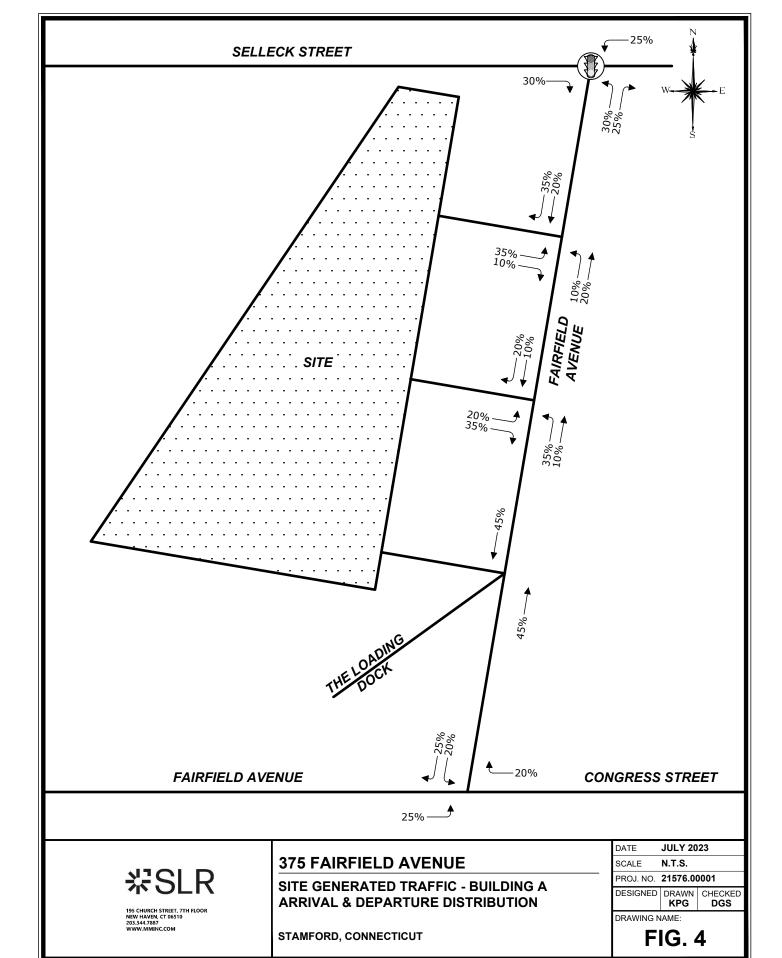
LOCATION MAP

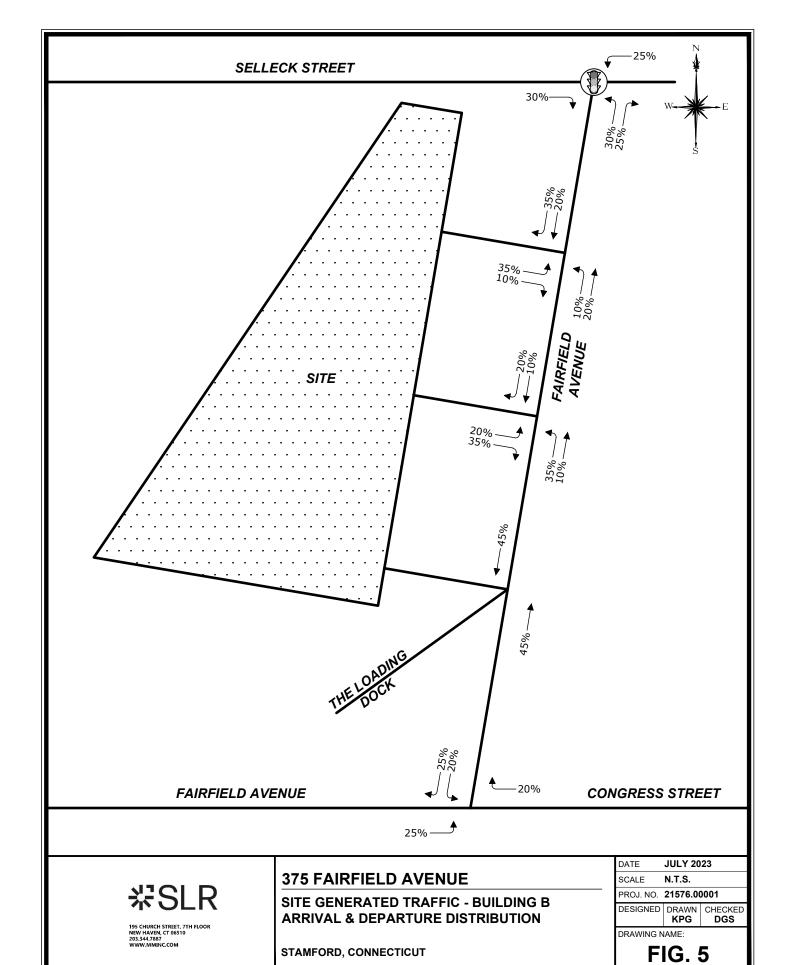
PROPOSED WAREHOUSE AND DISTRIBUTION FACILITY 375 FAIRFIELD AVENUE ASSOCIATES

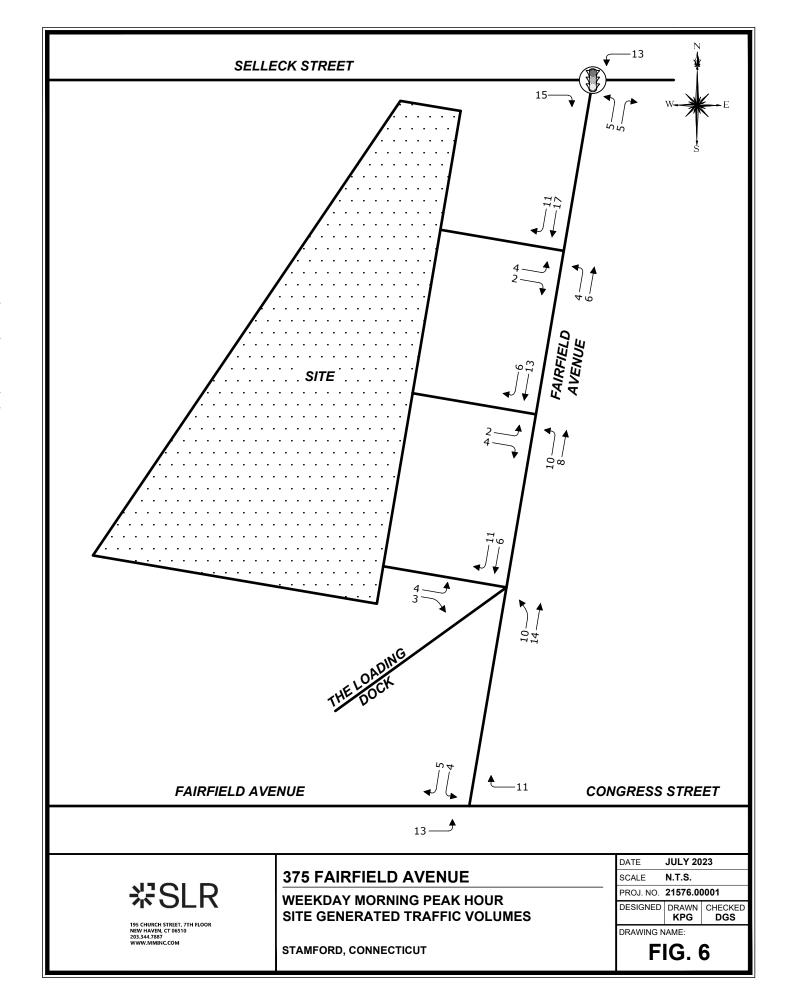
375 FAIRFIELD AVENUE STAMFORD, CONNECTICUT

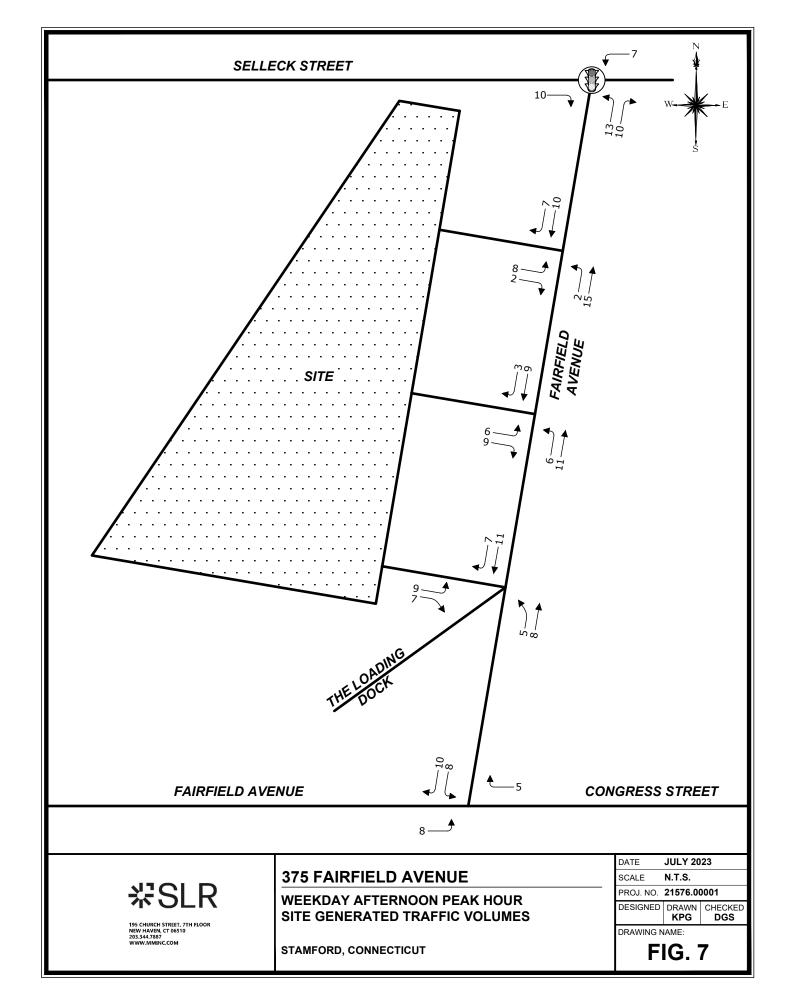

SCALE 1" = 1,000'

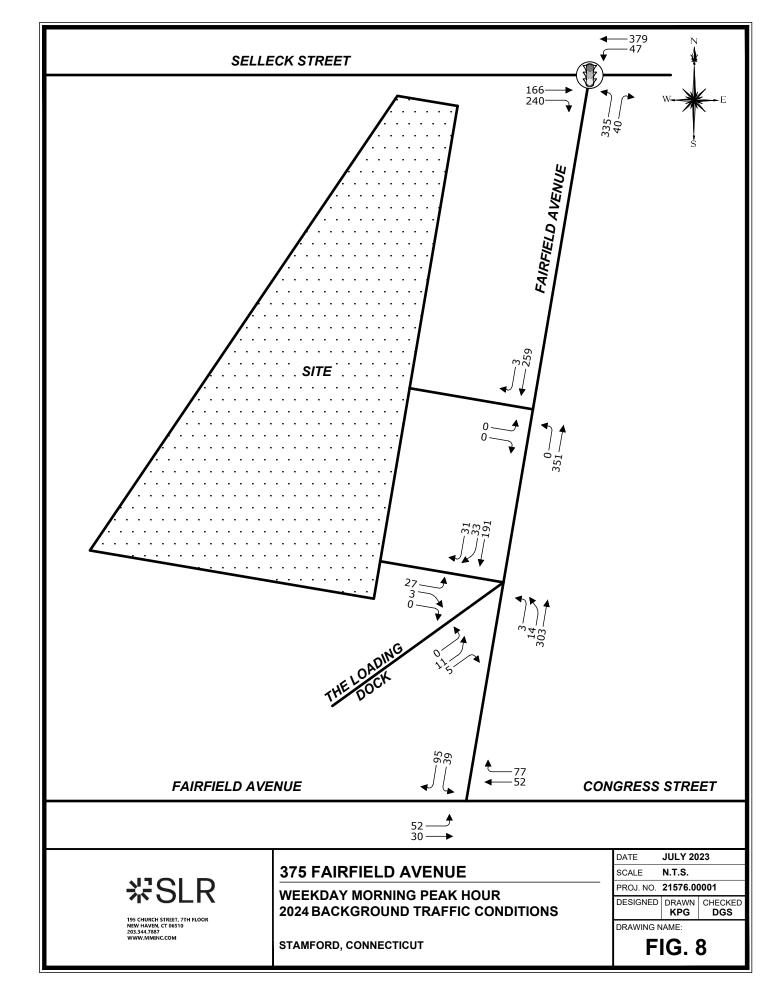

DATE 6/28/2023

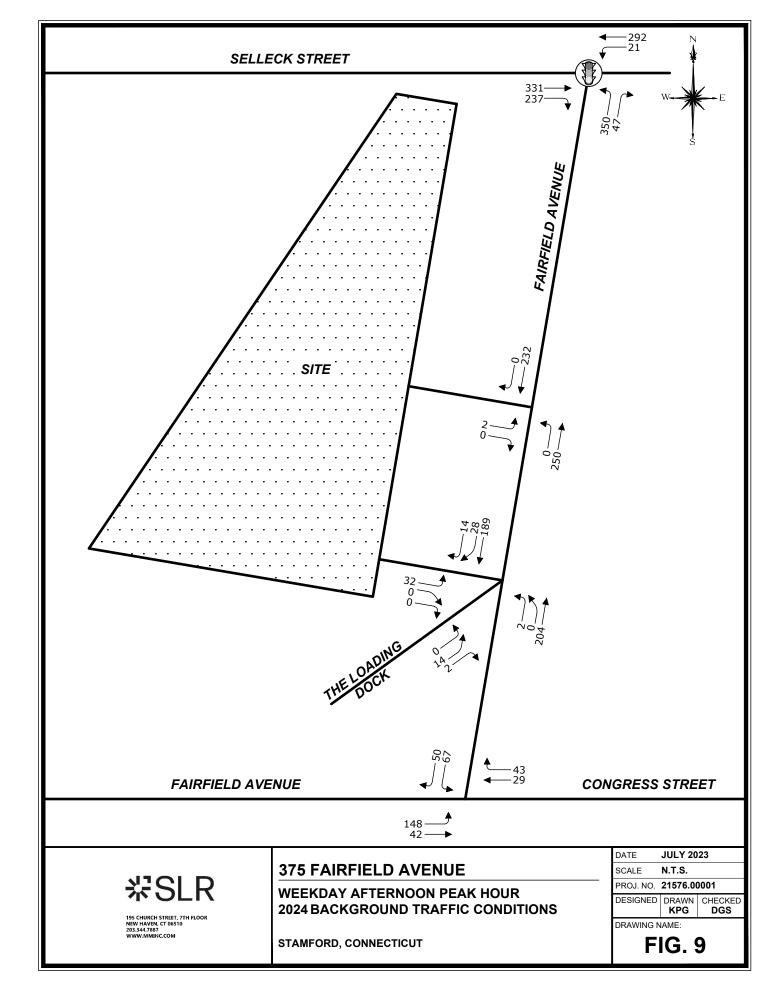

141.21576.00001

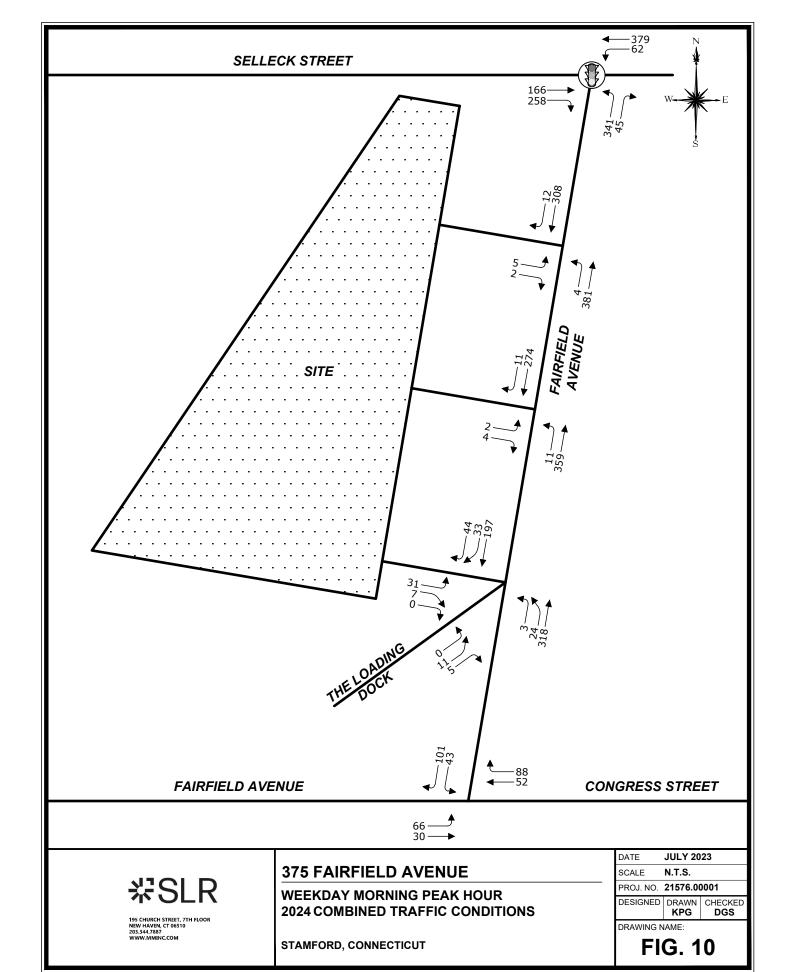

FIG. 1

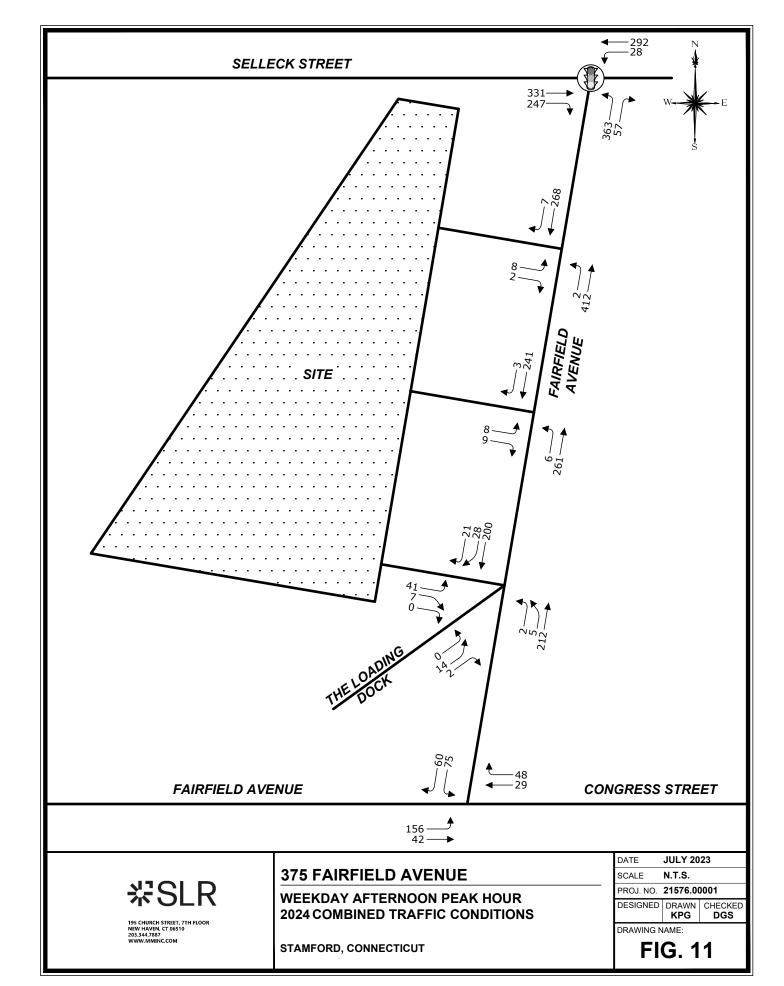












Appendix A Data Collection

Traffic Impact Study

375 Fairfield Avenue Stamford, CT

Mr. Jeff Goldblum SWC Office Furniture Outlet, Inc.

SLR Project No.: 141.21576.00001

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000001

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 7:30 TO 8:30 A.M.

Comment 4: TOTAL

						SELLEC	CK ST.			FAIRFIEI	_D AVE.			SELLE	CK ST.		
		SOUTH	BOUND			WESTB	OUND			NORTHI	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	0	1	4	0	63	7	0	2	0	55	2	50	40	0	3	•
7:15:00 AM	0	0	0	3	0	68	9	0	7	0	77	6	65	49	0	0	
7:30:00 AM	0	0	0	11	0	89	10	0	2	0	80	5	61	44	0	0	
7:45:00 AM	0	0	0	3	0	84	7	0	8	0	93	1	62	40	0	1	
8:00:00 AM	0	0	0	3	0	117	11	0	8	0	77	1	52	54	0	2	
8:15:00 AM	0	0	0	2	0	86	11	0	17	0	77	2	55	26	0	0	
8:30:00 AM	0	0	0	5	0	63	11	0	11	0	64	0	57	53	0	0	
8:45:00 AM	0	0	0	2	0	69	16	0	8	0	66	1	64	42	0	0	

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000001

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 7:30 TO 8:30 A.M.

Comment 4: CARS

						SELLEC	CK ST.			FAIRFIEL	LD AVE.			SELLEC	CK ST.		Г
		SOUTH	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	DUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	0	1	4	0	61	7	0	2	0	54	2	50	37	0	3	•
7:15:00 AM	0	0	0	3	0	67	9	0	5	0	72	6	61	46	0	0	
7:30:00 AM	0	0	0	11	0	87	10	0	1	0	76	5	59	42	0	0	
7:45:00 AM	0	0	0	3	0	80	6	0	8	0	92	1	59	40	0	1	
8:00:00 AM	0	0	0	3	0	115	10	0	8	0	76	1	51	52	0	2	
8:15:00 AM	0	0	0	2	0	85	11	0	16	0	75	2	53	26	0	0	
8:30:00 AM	0	0	0	5	0	61	10	0	11	0	63	0	56	51	0	0	
8:45:00 AM	0	0	0	2	0	67	16	0	7	0	64	1	63	41	0	0	

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000001

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 7:30 TO 8:30 A.M.

Comment 4: TRUCKS

						SELLEC	CK ST.			FAIRFIEL	D AVE.			SELLE	CK ST.		
		SOUTHE	BOUND			WESTB	OUND			NORTHE	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	0	0	0	0	2	0	0	0	0	1	0	0	1	0	0	.
7:15:00 AM	0	0	0	0	0	0	0	0	2	0	5	0	2	2	0	0	
7:30:00 AM	0	0	0	0	0	2	0	0	1	0	3	0	0	1	0	0	
7:45:00 AM	0	0	0	0	0	2	1	0	0	0	1	0	3	0	0	0	
8:00:00 AM	0	0	0	0	0	2	1	0	0	0	1	0	0	2	0	0	
8:15:00 AM	0	0	0	0	0	0	0	0	1	0	2	0	1	0	0	0	
8:30:00 AM	0	0	0	0	0	1	1	0	0	0	1	0	0	2	0	0	
8:45:00 AM	0	0	0	0	0	2	0	0	1	0	2	0	1	1	0	0	

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000001

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 7:30 TO 8:30 A.M.

Comment 4: BUSES

						SELLE	CK ST.			FAIRFIEI	LD AVE.			SELLE	CK ST.		l .
		SOUTH	BOUND			WESTB	OUND			NORTHI	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	•
7:15:00 AM	0	0	0	0	0	1	0	0	0	0	0	0	2	1	0	0	
7:30:00 AM	0	0	0	0	0	0	0	0	0	0	1	0	2	1	0	0	
7:45:00 AM	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	
8:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
8:15:00 AM	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	
8:30:00 AM	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	
8:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M.

Comment 4: TOTAL

	minorit i.	FAIRFIEL	D AVE.							FAIRFIEL	D AVE.		NO	RTH SITE	DRIVEWA	Υ	
		SOUTHE	BOUND			WESTB	OUND			NORTHB	OUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	63	0	0	0	0	0	0	0	62	0	0	0	0	0	0	•
7:15:00 AM	0	68	0	0	0	0	0	0	0	92	0	0	0	0	0	0	
7:30:00 AM	0	61	0	0	0	0	0	0	0	90	0	0	0	0	0	0	
7:45:00 AM	0	61	0	0	0	0	0	0	0	84	0	0	0	0	0	0	
8:00:00 AM	1	64	0	0	0	0	0	0	0	79	0	0	0	0	0	0	
8:15:00 AM	1	56	0	0	0	0	0	0	0	86	0	0	0	0	0	0	
8:30:00 AM	0	62	0	0	0	0	0	0	0	75	0	0	0	0	0	0	
8:45:00 AM	1	77	0	0	0	0	0	0	0	60	0	0	0	0	0	0	
9:00:00 AM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
9:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:00:00 PM 12:15:00 PM	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	
12:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:00:00 PM	1	55	0	0	0	0	0	0	0	78	0	0	0	0	1	0	
4:15:00 PM	0	48	0	0	0	0	0	0	0	74	0	0	0	0	2	0	
4:30:00 PM	0	59	0	0	0	0	0	0	0	77	0	0	0	0	2	0	
4:45:00 PM	0	48	0	0	0	0	0	0	0	61	0	0	0	0	2	0	
5:00:00 PM	0	58	0	0	0	0	0	0	0	67	0	0	0	0	1	0	
5:15:00 PM	0	54	0	0	0	0	0	0	0	66	0	0	0	0	0	0	
5:30:00 PM	0	53	0	0	0	0	0	0	0	55	0	0	0	0	0	0	
5:45:00 PM	0	48	0	0	0	0	0	0	0	49	0	0	0	0	0	0	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M.

Comment 4: CARS

	inione i.	FAIRFIEL	D AVE.							FAIRFIEL	D AVE.		NO	RTH SITE	DRIVEWA	Υ	
		SOUTHE	BOUND			WESTB	OUND			NORTHE	BOUND			EASTB	DUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	62	0	0	0	0	0	0	0	60	0	0	0	0	0	0	
7:15:00 AM	0	66	0	0	0	0	0	0	0	90	0	0	0	0	0	0	
7:30:00 AM	0	57	0	0	0	0	0	0	0	89	0	0	0	0	0	0	
7:45:00 AM	0	61	0	0	0	0	0	0	0	83	0	0	0	0	0	0	
8:00:00 AM	1	63	0	0	0	0	0	0	0	79	0	0	0	0	0	0	
8:15:00 AM	1	55	0	0	0	0	0	0	0	85	0	0	0	0	0	0	
8:30:00 AM	0	60	0	0	0	0	0	0	0	74	0	0	0	0	0	0	
8:45:00 AM	1	77	0	0	0	0	0	0	0	60	0	0	0	0	0	0	
9:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:00:00 PM	1	52	0	0	0	0	0	0	0	78	0	0	0	0	1	0	
4:15:00 PM	0	46	0	0	0	0	0	0	0	73	0	0	0	0	2	0	
4:30:00 PM	0	57	0	0	0	0	0	0	0	77	0	0	0	0	2	0	
4:45:00 PM	0	46	0	0	0	0	0	0	0	60	0	0	0	0	2	0	
5:00:00 PM	0	58	0	0	0	0	0	0	0	67	0	0	0	0	1	0	
5:15:00 PM	0	52	0	0	0	0	0	0	0	65	0	0	0	0	0	0	
5:30:00 PM	0	53	0	0	0	0	0	0	0	55	0	0	0	0	0	0	
5:45:00 PM	0	48	0	0	0	0	0	0	0	49	0	0	0	0	0	0	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M.

^		TO	101/0
Comment	4.	IΚι	ICKS

Con	nment 4:																
		FAIRFIEL								FAIRFIEL			NC	ORTH SITE		Y	
		SOUTHE				WESTB				NORTHE				EASTB			
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	1	0	0	0	0	0	0	0	2	0	0	0	0	0	0	
7:15:00 AM	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	
7:30:00 AM	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
7:45:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
8:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:15:00 AM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
8:30:00 AM	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
8:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
12:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:00:00 PM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:15:00 PM	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
4:30:00 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:45:00 PM	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
5:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:15:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
5:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M.

Comment 4: BUSES

Jon J	mmem 4.	FAIRFIE	LD AVE.							FAIRFIE	LD AVE.		NO	RTH SITE	DRIVEWA	Y	
		SOUTH				WESTE	BOUND				BOUND			EASTE			1
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	•
7:15:00 AM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:30:00 AM	0	2	0	0	0	0	0	0	0		0	0	0	0	0	0	
7:45:00 AM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
8:00:00 AM	0	1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
8:15:00 AM	0	1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
8:30:00 AM	0	1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
8:45:00 AM 9:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
9:15:00 AM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
9:30:00 AM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
9:45:00 AM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
10:00:00 AM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
10:15:00 AM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
10:30:00 AM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
10:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11:45:00 AM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
12:00:00 PM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
12:15:00 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
12:30:00 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
12:45:00 PM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
1:00:00 PM 1:15:00 PM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
1:30:00 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
1:45:00 PM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
2:00:00 PM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
2:15:00 PM	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
2:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3:45:00 PM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
4:00:00 PM	0	1	0	0	0	0	0	0	0		0	0	0	0	0	0	
4:15:00 PM	0	1	0	0	0	0	0	0	0		0	0	0	0	0	0	
4:30:00 PM	0	1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
4:45:00 PM	0	1	0	0	0	0	0	0	0		0	0	0	0	0	0	
5:00:00 PM	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
5:15:00 PM 5:30:00 PM	0	2	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
5:45:00 PM	0	0	0	0	0	0	0	0	0			0	0	0	0	0	
5.45.00 PM	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 8:00 TO 9:00 A.M.

Comment 4: TOTAL

		FAIRFIEL	LD AVE.			CONGRI	ESS ST.							FAIRFIE	LD AVE.		
		SOUTH	BOUND			WESTE	OUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	19	0	3	0	22	4	0	0	0	0	0	0	0	3	10	0	
7:15:00 AM	15	0	8	0	14	3	0	0	0	0	0	4	0	2	13	0	
7:30:00 AM	19	0	7	0	21	9	0	0	0	0	0	1	0	5	9	0	
7:45:00 AM	26	0	7	0	22	11	0	0	0	0	0	1	0	8	12	0	
8:00:00 AM	26	0	9	1	19	11	0	0	0	0	0	0	0	6	11	0	
8:15:00 AM	23	0	14	0	13	16	0	0	0	0	0	0	0	7	19	0	
8:30:00 AM	24	0	8	0	17	15	0	0	0	0	0	0	0	5	14	0	
8:45:00 AM	43	0	3	0	12	22	0	1	0	0	0	0	0	7	13	0	

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 8:00 TO 9:00 A.M.

Comment 4: CARS

		FAIRFIEI	LD AVE.			CONGRE	ESS ST.							FAIRFIEL	D AVE.		
		SOUTH	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	DUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	18	0	3	0	21	4	0	0	0	0	0	0	0	3	9	0	
7:15:00 AM	14	0	7	0	14	3	0	0	0	0	0	4	0	2	13	0	
7:30:00 AM	18	0	6	0	21	9	0	0	0	0	0	1	0	5	8	0	
7:45:00 AM	25	0	7	0	22	11	0	0	0	0	0	1	0	8	12	0	
8:00:00 AM	25	0	9	1	19	11	0	0	0	0	0	0	0	6	11	0	
8:15:00 AM	21	0	14	0	13	16	0	0	0	0	0	0	0	7	18	0	
8:30:00 AM	24	0	8	0	17	15	0	0	0	0	0	0	0	5	14	0	
8:45:00 AM	42	0	3	0	12	22	0	1	0	0	0	0	0	7	13	0	

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 8:00 TO 9:00 A.M.

Comment 4: TRUCKS

- 1		FAIRFIEI	LD AVE.			CONGRE	ESS ST.							FAIRFIE	LD AVE.		l .
		SOUTH	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	
7:15:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:45:00 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:00:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:15:00 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
8:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Start Date: 6/15/2023 Start Time: 7:00:00 AM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 8:00 TO 9:00 A.M.

Comment 4: BUSES

		FAIRFIE	LD AVE.			CONGRE	ESS ST.							FAIRFIEL	D AVE.		
		SOUTH	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
7:00:00 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
7:15:00 AM	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:30:00 AM	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	
7:45:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:00:00 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:15:00 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:30:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:45:00 AM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M. Comment 4: TOTAL

		FAIRFIE	LD AVE			FAIRFI	ELD AVE		AB	IGIAL KIRSC	H DRIVEV	VAY	SC	DUTH SITE	DRIVEWA'	Y	
		SOUTH	IBOUND			NORTH	HBOUND			From So	uthwest			EASTB	OUND		
		Bear							Hard				Hard				
Start Time	Right	Right	Thru	Peds	Thru	Left	Hard Left	Peds	Right	Bear Left		Peds	Right	Right	Left	Peds	
7:00:00 AM	6	6		0	58	1	0	0			0	0		0	2	0	
7:15:00 AM	8	3		0	88	1		0			0	0		0	1	0	
7:30:00 AM	6	5	46	0	84	1		0		_	0	0	-	0	3	0	
7:45:00 AM	11	5	45	0	71	2		0	_		0	0	-	1	10	0	
8:00:00 AM	6	3		0	73	(0		_	0	0	•	0	4	0	
8:15:00 AM	7	4		0	72	1		0	_		0	0	0	1	9	0	
8:30:00 AM	5	2		0	70	2		0	C	_	0	0	•	2	2	0	
8:45:00 AM	7	4		0	55	1		0	_	-	0	0	-	0	3	0	
9:00:00 AM	0	0	-	0	0	(0	_		0	0	-	0	0	0	
9:15:00 AM	0	0	-	0	0	(0			0	0	-	0	0	0	
9:30:00 AM	0	0	-	0	0	(0			0	0		0	0	0	
9:45:00 AM	0	0	-	0	0	(0			0	0		0	0	0	
10:00:00 AM	0	0	-	0	0	(0			0	0	-	0	0	0	
10:15:00 AM	0	0	-	0	0	(0	_		0	0	-	0	0	0	
10:30:00 AM	0	0	-	0	0	(0			0	0	-	0	0	0	
10:45:00 AM	0	0	-	0	0	(0	_		0	0	-	0	0	0	
11:00:00 AM	0	0	-	0	0	(0			0	0	-	0	0	0	
11:15:00 AM	0	0	-	0	0	(0			0	0	-	0	0	0	
11:30:00 AM	0	0	-	0	0	(0			0	0		0	0	0	
11:45:00 AM	0	0	-	0	0	(0			0	0		0	0	0	
12:00:00 PM	0	0	-	0	0	(0			0	0		0	0	0	
12:15:00 PM	0	0	-	0	0	(0			0	0	0	0	0	0	
12:30:00 PM	0	0		0	0	(0			0	0		0	0	0	
12:45:00 PM	0	0	-	0	0	(0	_		0	0	-	0	0	0	
1:00:00 PM	0	0		0	0	(0			0	0	-	0	0	0	
1:15:00 PM 1:30:00 PM	0	0	-	0	0	(0	(0	0	0	0	0	0	
	-	-	-	-	-	-		-	_		-	•	-	-	-	-	
1:45:00 PM 2:00:00 PM	0	0	-	0	0	(0	_		0	0	-	0	0	0	
2:00:00 PM 2:15:00 PM	0	0	-	0	0	(0	_		0	0	-	0	0	0	
2:30:00 PM	0	0	-	0	0	(0	_		0	0	-	0	0	0	
2:45:00 PM	0	0	•	0	0	(0			0	0	-	0	0	0	
3:00:00 PM	0	0	-	0	0	(0			0	0	-	0	0	0	
3:15:00 PM	0	0	-	0	0	(0			0	0	-	0	0	0	
3:30:00 PM	0	0	-	0	0	(0	_		0	0	0	0	0	0	
3:45:00 PM	0	0	-	0	0	(0	_		0	0	0	0	0	0	
4:00:00 PM	2	1	49	0	72	(0	_		0	0	-	1	5	0	
4:15:00 PM	0	4		0	67	(0			0	0	-	0	4	0	
4:30:00 PM	4	5		0	66	1		0			0	0	-	0	3	0	
4:45:00 PM	3	2		0	54	C		0	_	-	0	0	-	0	2	0	
5:00:00 PM	4	1	53	0	54 57	(0			0	0	-	0	6	0	
5:15:00 PM	3	4	45	0	57 57	(0			0	0	0	0	6	0	
5:30:00 PM	3	4		0	40	(0			0	0		0	11	0	
5:45:00 PM	3	3		0	38	(0			0	0		0	8	0	
J.4J.UU F W	3	3	42	U	30	,	, 0	U	·	, 3	U	U	U	U	0	U	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M. Comment 4: CARS

		FAIRFIE	LD AVE				FAIRFI	ELD AVE			ABIGIAL I	KIRSCH D	RIVEWAY		S	OUTH SITE	DRIVEWA	Y	
		SOUTH	BOUND		WESTBO		NORTH	HBOUND			Fre	om Southw	est			EASTE	BOUND		
		Bear								Hard					Hard				
Start Time	Right	Right	Thru	Peds	Peds	Thru	Left	Hard Left	Peds	Right	Bear Left			Peds	Right	Right	Left	Peds	
7:00:00 AM 7:15:00 AM	6 7	6 3		(56 86	,	1 0 1 0	0	-	-	0	-	-	-	0		0	
7:30:00 AM	6	5 5		(82		1 1	0		2	0		•	-	0	2	0	
7:45:00 AM	10	4	44	(70			0			-	-	·	•	1	10	0	
8:00:00 AM	6	3		(73	(0	_	. 2	0	-	•	•	0	4	0	
8:15:00 AM	7	4	43	(71		, ,	0	-	_	0	-	•	•	1	9	0	
8:30:00 AM	4	2		Ċ		69		. 0	0) (2	0		0	0	2	2	0	
8:45:00 AM	7	3		Č		55		. 0	Ö	-	_	0	0	0	0	0	2	0	
9:00:00 AM	0	0		C	0	0	(0	C) (0	0	0	0	0	0	0	0	
9:15:00 AM	0	0	0	C	0	0	(0	C) (0	0	0	0	0	0	0	0	
9:30:00 AM	0	0	0	C	0	0	(0	C) (0	0	0	0	0	0	0	0	
9:45:00 AM	0	0	0	C	0	0	(0	0) (0	0	0	0	0	0	0	0	
10:00:00 AM	0	0	0	C	0	0	(0	C) C	0	0	0	0	0	0	0	0	
10:15:00 AM	0	0	0	C	0	0	(0	C) (0	0	0	0	0	0	0	0	
10:30:00 AM	0	0	-	C		0	(C	-		0	•	•	0	0	0	0	
10:45:00 AM	0	0	•	C		0	(, ,	C	-		0		•	•	0	0	0	
11:00:00 AM	0	0	ū	C		0	(0	-	•	0	-	•	-	0	0	0	
11:15:00 AM	0	0	-	C		0	(,	0		•	0	-	•		0	0	0	
11:30:00 AM	0	0		C		0	(0		•	0		-	•	-	0	0	
11:45:00 AM	0	0		C		0	(0		•	0		·	•	0	0	0	
12:00:00 PM	0	0		C		0	(,	0		•	0		-	-	0	0	0	
12:15:00 PM	0	0		(0	(0	-	_	0		•	-	0	0	0	
12:30:00 PM 12:45:00 PM	0	0		(0	(0		•	0	•	•	-	0	0	0	
1:00:00 PM	0	0	-	(0	(0	-	•	0	-	·	-	0	0	0	
1:15:00 PM	0	0				0	(0			0	•	•	•	0	0	0	
1:30:00 PM	0	0	-	(0	(,	0	-	•	0	•	•	-	0	0	0	
1:45:00 PM	0	0	-	(0	(,	0	-	•	0	-	•	-	0	0	0	
2:00:00 PM	0	0	-	Č		0	Ò	0	Ö		0	0	-	-	-	0	0	0	
2:15:00 PM	0	0	0	C	0	0	(0	C) (0	0	0	0	0	0	0	0	
2:30:00 PM	0	0	0	C	0	0	(0	C) (0	0	0	0	0	0	0	0	
2:45:00 PM	0	0	0	C	0	0	(0	C) (0	0	0	0	0	0	0	0	
3:00:00 PM	0	0	0	C	0	0	(0	C) C	0	0	0	0	0	0	0	0	
3:15:00 PM	0	0	0	C	0	0	(0	C) (0	0	0	0	0	0	0	0	
3:30:00 PM	0	0	•	C		0	(C	-		0	-	•	0	0	0	0	
3:45:00 PM	0	0	•	C		0	(, ,	C	-	0	0	-	·	-	0	0	0	
4:00:00 PM	2	1	46	C		72	(0		1	0	•	•	-	1	5	0	
4:15:00 PM	0	4	40	C		67	(0	-	2	0	•	•	-	0	4	0	
4:30:00 PM	4	5		C		66	1		0		•	0		-	-	0	3	0	
4:45:00 PM	3	2		C		54		0	0			0	-	•	•	0	2	0	
5:00:00 PM	4	1	52	C		57		0	0	-	-	0		•	-	0	6	0	
5:15:00 PM	3	4	44	C		57		0	0	-	2	0	-	•	-	0	6	0	
5:30:00 PM	3	4	46	C		40		0	0		•	0		•		0	10	0	
5:45:00 PM	3	3	42	C	0	38	(0	C) (3	0	0	0	0	0	8	0	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M.

Comment 4: TRUCKS

	THE TE	FAIRFIE	LD AVE					ELD AVE				KIRSCH DI			S	OUTH SITE		Υ	
			BOUND		WESTBO		NORTH	IBOUND			Fr	om Southw	est			EASTB	OUND		
Start Time	Right	Bear Right	Thru	Peds	Peds	Thru	Left	Hard Left	Peds	Hard Right	Bear Left	Hard Left	Peds	Peds	Hard Right	Right	Left	Peds	
7:00:00 AM		0		(0	0	0	0	(0	0	0	0	
7:15:00 AM		0		(2			0			0			0	0	0	0	
7:30:00 AM		0	0	(, ,	1	(0	0	0	0	(0	0	1	0	
7:45:00 AM		1	2	(,	1	(0	0	0	0	(0	0	0	0	
8:00:00 AM		0	0	(,	0	(0	0	•	0	(0	0	0	0	
8:15:00 AM 8:30:00 AM		0	0	(1	1		0	0	·	0	(0	0	0	0	
8:45:00 AM		1	1	(0	(0		•	0	(0		1	0	
9:00:00 AM		0	0	(0	(0	-	-	0	(0	-	0	0	
9:15:00 AM		0	0	(,	0	(0	0	U	0	(0	0	0	0	
9:30:00 AM		0	0	(0	(0	0	0	0	(0	U	0	0	
9:45:00 AM		0	0	(0	(0	0	0	0			0	0	0	0	
10:00:00 AM		0	0	Č) 0	0	Ċ	0	0	0	0	0	Č) 0	0	0	0	0	
10:15:00 AM		0	0	() 0	0	(0	0	0	0	0	() 0	0	0	0	0	
10:30:00 AM	0	0	0	() 0	0	Ċ	0	0	0	0	0	Ċ	0	0	0	0	0	
10:45:00 AM		0	0	(0	0	Ċ	0	0	0	0	0	Ċ	0	0	0	0	0	
11:00:00 AM	0	0	0	(0	0	(0	0	0	0	0	(0	0	0	0	0	
11:15:00 AM	0	0	0	(0	0	C	0	0	0	0	0	(0	0	0	0	0	
11:30:00 AM	0	0	0	(0	0	C	0	0	0	0	0	(0	0	0	0	0	
11:45:00 AM	0	0	0	(0	0	C	0	0	0	0	0	(0	0	0	0	0	
12:00:00 PM		0	0	-		0	C	-	0	0	-	0	(0	-	0	0	
12:15:00 PM		0	0	(0	C		0	0	·	0	(0	0	0	0	
12:30:00 PM		0	0	(0	(-	0	0	·	0	(0	0	0	0	
12:45:00 PM		0	0	(0	(0	0	0	0	(0	0	0	0	
1:00:00 PM		0	0	(,	0	(0	0	0	0	(, ,	0	0	0	0	
1:15:00 PM		0	0	(0	(0	0	0	0	(, ,	0	0	0	0	
1:30:00 PM		0	0	(0	(0	-	·	0	(, ,	0	0	0	0	
1:45:00 PM 2:00:00 PM		0	0	(, ,	0	(0	0	0	0	(, ,	0	0	0	0	
2:00:00 PM 2:15:00 PM		0	0	(0	(0	0	0	0	(0	0	0	0	
2:30:00 PM		0	0	(,	0	(-	0	0	0	0	(0	ū	0	0	
2:45:00 PM		0	0	,		0	(0	ū	·	0	(0	0	0	0	
3:00:00 PM		0	0	(0	(0	-	-	0	(0	•	0	0	
3:15:00 PM		0	0	,		0	(0	0	•	0	(0	0	0	0	
3:30:00 PM		0	0	(0	(-	0	0	0	0	(0	0	0	0	
3:45:00 PM		0	0	(,	0	(0	0	0	0	(0	0	0	0	
4:00:00 PM		0	2	Ò) 0	0	Č	0	0	0	0	0	Č) 0	0	0	0	0	
4:15:00 PM		0	1	() 0	0	Ċ	0	0	0	0	0	() 0	0	0	0	0	
4:30:00 PM		0	1	() 0	0	Ċ	0	0	0	1	0	() 0	0	0	0	0	
4:45:00 PM		0	1	() 0	0	Ċ	0	0	0	0	0	() 0	0	0	0	0	
5:00:00 PM		0	0	(0	0	Ċ	0	0	0	0	0	Ċ	0	0	0	0	0	
5:15:00 PM		0	0	(0	0	Ċ	0	0	0	0	0	(0	0	0	0	0	
5:30:00 PM	0	0	0	(0	0	(0	0	0	0	0	(0	0	0	1	0	
5:45:00 PM	0	0	0	(0	0	C	0	0	0	0	0	(0	0	0	0	0	

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 4:30 TO 5:30 P.M. Comment 4: BUSES

j		FAIRFIE	LD AVE				FAIRFI	ELD AVE			ABIGIAL	KIRSCH D	RIVEWAY		S	OUTH SITE	DRIVEWA	Υ	
		SOUTH	BOUND		WESTBO		NORTH	HBOUND			Fr	om Southw	est			EASTB	OUND		
Start Time	Right	Bear Right	Thru	Peds	Peds	Thru	Left	Hard Left	Peds	Hard Right	Bear Left	Hard Left	Peds	Peds	Hard Right	Right	Left	Peds	
7:00:00 AM	0	0				-	-		0	-	-	0		-	-	-	0	0	
7:15:00 AM		0	2	(-	0	-	-	0	-	-	•		0 0	0	ŭ	0	0	
7:30:00 AM		0	2	(1	(0			•			0	ū	0	0	
7:45:00 AM	0	0	0	(•	0		U	0			•			0	ŭ	0	0	
8:00:00 AM		0	1	(0	•		0			•	(0	ŭ	0	0	
8:15:00 AM		0	1	(•	0	•		0			•	(0	0	•	0	0	
8:30:00 AM	0	0	1	(0			0			•	•		0	ū	0	0	
8:45:00 AM 9:00:00 AM	0	0	0	•	•	0	•		0	-		•			0	-	0	0	
9:15:00 AM		0	0	-	•	0	•		0	-		•		0 0	0	-	0	0	
9:30:00 AM		0	0	(0	•		0	-		•		-	0	-	0	0	
9:45:00 AM		0	0	(0	_		0			•			0	ū	0	0	
10:00:00 AM	0	0	0	(•	0	•	-	0			•		-	0	0	0	0	
10:15:00 AM		0	0	•	•	0	•		0			•		-	0	-	0	0	
10:30:00 AM	0	0	0	Č	0	0		0	0	-) 0	0		0	0	0	0	0	
10:45:00 AM		0	0	(0	0		0	0) () 0	0	(0	0	0	0	0	
11:00:00 AM	0	0	0	(0	0	C	0	0) (0	0	(0	0	0	0	0	
11:15:00 AM	0	0	0	(0 0	0		0	0) (0	0	(0 0	0	0	0	0	
11:30:00 AM	0	0	0	(0 0	0		0	0) (0	0	(0 0	0	0	0	0	
11:45:00 AM	0	0	0	(0 0	0		0	0) (0	0	(0 0	0	0	0	0	
12:00:00 PM	0	0	0			0	-		0	-		•			0	-	0	0	
12:15:00 PM	0	0	0	(0	-	-	0	-		•			0	ū	0	0	
12:30:00 PM		0	0			0	•		0			•			0	-	0	0	
12:45:00 PM	0	0	0	(0	_		0	-	-		(0	_	0	0	
1:00:00 PM		0	0			0	_		0			•	(0	ū	0	0	
1:15:00 PM	0	0	0	(0	-		0	-		•	(0	ŭ	0	0	
1:30:00 PM		0	0	(0	•		0	-		•			0	ŭ	0	0	
1:45:00 PM 2:00:00 PM	0	0	0	-		0			0	-				0 0	0	-	0	0	
2:15:00 PM	0	0	0	-		-	-		0	-		•		0 0	0	-	0	0	
2:30:00 PM	0	0	0	(0	•		0	-		•			0	-	0	0	
2:45:00 PM		0	0	•	•	0	•		0	-		•			0	ŭ	0	0	
3:00:00 PM	0	0	0	(0			0	-		•			0	ū	0	0	
3:15:00 PM		0	0	Č	0	0		0	0) () 0	0		-	0	-	0	0	
3:30:00 PM	0	0	0	(0	0		0	0) () 0	0	(0	0	0	0	0	
3:45:00 PM	0	0	0	(0	0	C	0	0) (0	0	(0	0	0	0	0	
4:00:00 PM		0	1	(0	0	(1	0) (0	0	(0	0	0	0	0	
4:15:00 PM	0	0	1	(0 0	0	(0	0) (0	0	(0 0	0	0	0	0	
4:30:00 PM	0	0	1	(0 0	0	(1	0) (0	0	(0 0	0	0	0	0	
4:45:00 PM	0	0	0	(0 0	0	(0	0) (0	0	(0 0	0	0	0	0	
5:00:00 PM		0	1	(0	•	0	0			•	(0	•	0	0	
5:15:00 PM	0	0	1	(•	0	•		0			•	(, ,	0	ŭ	0	0	
5:30:00 PM	0	0	0			0	•		0	-	-	•			0		0	0	
5:45:00 PM	0	0	0	(0 0	0	(0	0) () 0	0	(0 0	0	0	0	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000002

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 5:00 TO 6:00 P.M.

Comment 4: TOTAL

		FAIRFIEL	LD AVE.			CONGRE	SS ST.					_		FAIRFIEL	D AVE.	_	
		SOUTHE	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
4:00:00 PM	12	0	9	0	7	1	0	0	0	0	0	0	0	8	15	0	
4:15:00 PM	14	0	16	2	13	4	0	0	0	0	0	0	0	11	13	0	
4:30:00 PM	9	0	10	0	6	5	0	0	0	0	0	0	0	6	17	0	
4:45:00 PM	15	0	10	1	7	5	0	0	0	0	0	0	0	17	21	0	
5:00:00 PM	7	0	19	2	15	6	0	1	0	0	0	0	1	15	42	0	
5:15:00 PM	14	0	12	1	11	6	0	1	0	0	0	0	0	7	31	0	
5:30:00 PM	16	0	11	1	10	4	0	0	0	0	0	0	0	12	34	0	
5:45:00 PM	12	0	23	1	5	8	1	0	0	0	0	1	0	4	38	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000002

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR

Comment 3: 5:00 TO 6:00 P.M.

Comment 4: CARS

		FAIRFIEL	LD AVE.			CONGRE	SS ST.							FAIRFIEL	D AVE.		
		SOUTHE	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	OUND		l
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	[
4:00:00 PM	12	0	9	0	7	1	0	0	0	0	0	0	0	8	15	0	
4:15:00 PM	14	0	16	2	13	4	0	0	0	0	0	0	0	11	13	0	
4:30:00 PM	9	0	10	0	6	5	0	0	0	0	0	0	0	6	17	0	
4:45:00 PM	14	0	10	1	7	5	0	0	0	0	0	0	0	17	21	0	
5:00:00 PM	7	0	19	2	15	6	0	1	0	0	0	0	1	15	42	0	
5:15:00 PM	13	0	12	1	11	6	0	1	0	0	0	0	0	7	31	0	
5:30:00 PM	15	0	11	1	10	4	0	0	0	0	0	0	0	12	34	0	
5:45:00 PM	11	0	23	1	5	8	1	0	0	0	0	1	0	4	38	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000002

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 5:00 TO 6:00 P.M.

Comment 4: TRUCKS

		FAIRFIE	LD AVE.			CONGRE	ESS ST.							FAIRFIE	LD AVE.		
		SOUTH	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
4:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
4:15:00 PM	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:30:00 PM	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:45:00 PM	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:00:00 PM	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:15:00 PM	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:30:00 PM	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:45:00 PM	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000002

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 5:00 TO 6:00 P.M.

Comment 4: BUSES

		FAIRFIE	LD AVE.			CONGRE	ESS ST.							FAIRFIEL	LD AVE.		
		SOUTH	BOUND			WESTB	BOUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
4:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	=
4:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:45:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:15:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:30:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:45:00 PM	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 5:00 TO 6:00 P.M.

Comment 4: TOTAL

						SELLEC	CK ST.			FAIRFIEL	LD AVE.			SELLEC	CK ST.		
		SOUTH	BOUND			WESTB	OUND			NORTH	BOUND			EASTB	DUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
4:00:00 PM	0	0	0	1	0	64	1	0	11	0	59	1	49	55	0	0	
4:15:00 PM	0	0	0	9	0	48	3	0	13	0	71	2	43	72	0	1	
4:30:00 PM	0	0	0	6	0	52	4	0	10	0	67	5	44	67	0	0	
4:45:00 PM	0	0	0	5	0	54	4	0	13	0	63	0	47	73	0	1	
5:00:00 PM	0	0	0	8	0	63	4	0	13	0	86	4	56	79	0	0	
5:15:00 PM	0	0	0	4	0	92	3	0	10	0	83	2	56	84	0	0	
5:30:00 PM	0	0	0	7	0	78	4	0	8	0	83	6	62	61	0	0	
5:45:00 PM	0	0	0	10	0	54	2	0	11	0	87	3	51	102	0	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 5:00 TO 6:00 P.M.

Comment 4: CARS

						SELLEC	CK ST.			FAIRFIEL	LD AVE.			SELLEC	CK ST.		
		SOUTH	BOUND			WESTB	OUND			NORTHE	BOUND			EASTB	DUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
4:00:00 PM	0	0	0	1	0	60	1	0	10	0	58	1	49	52	0	0	
4:15:00 PM	0	0	0	9	0	47	3	0	13	0	71	2	42	72	0	1	
4:30:00 PM	0	0	0	6	0	52	4	0	10	0	67	5	43	66	0	0	
4:45:00 PM	0	0	0	5	0	54	4	0	13	0	63	0	45	72	0	1	
5:00:00 PM	0	0	0	8	0	63	4	0	13	0	86	4	54	79	0	0	
5:15:00 PM	0	0	0	4	0	92	3	0	10	0	81	2	55	84	0	0	
5:30:00 PM	0	0	0	7	0	78	4	0	8	0	81	6	60	61	0	0	
5:45:00 PM	0	0	0	10	0	54	2	0	11	0	87	3	50	101	0	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 5:00 TO 6:00 P.M.

Comment 4: TRUCKS

						SELLE	CK ST.			FAIRFIE	LD AVE.			SELLE	CK ST.		
		SOUTH	BOUND			WESTB	BOUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
4:00:00 PM	0	0	0	0	0	2	0	0	1	0	1	0	0	1	0	0	•
4:15:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
4:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	
5:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:15:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
5:30:00 PM	0	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	
5:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	

Start Date: 10/26/2022 Start Time: 4:00:00 PM Site Code: 00000004

Comment 1: TRAFFIC COUNTS Comment 2: PEAK HOUR Comment 3: 5:00 TO 6:00 P.M.

Comment 4: BUSES

						SELLE	CK ST.			FAIRFIEI	LD AVE.			SELLEC	CK ST.		
		SOUTHE	BOUND			WESTE	OUND			NORTH	BOUND			EASTB	OUND		
Start Time	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	
4:00:00 PM	0	0	0	0	0	2	0	0	0	0	0	0	0	2	0	0	
4:15:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	
4:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
4:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5:00:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	
5:15:00 PM	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	
5:30:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
5:45:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	

Appendix B Capacity Analysis

Traffic Impact Study

375 Fairfield Avenue Stamford, CT

Mr. Jeff Goldblum SWC Office Furniture Outlet, Inc.

SLR Project No.: 141.21576.00001

	-	•	•	←	1	~			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Lane Configurations	†	7		41∱	ሻ	7			
Traffic Volume (vph)	166	240	47	379	335	40			
Future Volume (vph)	166	240	47	379	335	40			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Storage Length (ft)		0	0		0	100			
Storage Lanes		1	0		1	1			
Taper Length (ft)			25		25				
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	1.00			
Ped Bike Factor		0.97		1.00	0.99	0.96			
Frt		0.850				0.850			
Flt Protected				0.995	0.950				
Satd. Flow (prot)	1827	1495	0	3153	1671	1583			
FIt Permitted				0.898	0.950				
Satd. Flow (perm)	1827	1456	0	2841	1654	1525			
Right Turn on Red		No				No			
Satd. Flow (RTOR)									
Link Speed (mph)	25			25	25				
Link Distance (ft)	230			247	289				
Travel Time (s)	6.3			6.7	7.9				
Confl. Peds. (#/hr)		9	9		9	9			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Heavy Vehicles (%)	4%	8%	2%	9%	8%	2%			
Parking (#/hr)				0					
Adj. Flow (vph)	180	261	51	412	364	43			
Shared Lane Traffic (%)									
Lane Group Flow (vph)	180	261	0	463	364	43			
Number of Detectors	0	0	1	1	1	1			
Detector Template			Left						
Leading Detector (ft)	0	0	20	45	45	45			
Trailing Detector (ft)	0	0	0	-5	5	5			
Detector 1 Position(ft)	0	0	0	-5	5	5			
Detector 1 Size(ft)	50	50	20	50	40	40			
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	Cl+Ex	CI+Ex			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Turn Type	NA	pm+ov	Perm	NA	Prot	Perm			
Protected Phases	2 4	5		2	5		3	4	
Permitted Phases		2 4	2			5			
Detector Phase	2	2	2	2	5	5			
Switch Phase									
Minimum Initial (s)		5.0	15.0	15.0	5.0	5.0	7.0	5.0	
Minimum Split (s)		10.3	20.6	20.6	10.3	10.3	25.0	9.7	
Total Split (s)		40.3	35.6	35.6	40.3	40.3	25.0	34.6	
Total Split (%)		29.7%	26.3%	26.3%	29.7%	29.7%	18%	26%	
Maximum Green (s)		35.0	30.0	30.0	35.0	35.0	21.0	29.9	
Yellow Time (s)		3.0	3.6	3.6	3.0	3.0	4.0	3.6	
All-Red Time (s)		2.3	2.0	2.0	2.3	2.3	0.0	1.1	

	→	•	•	←	4	/			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0			
Total Lost Time (s)		5.3		5.6	5.3	5.3			
Lead/Lag							Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	
Vehicle Extension (s)		2.5	2.0	2.0	2.5	2.5	3.0	2.5	
Recall Mode		None	Min	Min	None	None	None	None	
Walk Time (s)							7.0		
Flash Dont Walk (s)							14.0		
Pedestrian Calls (#/hr)							44		
Act Effct Green (s)	26.0	51.1		26.0	24.8	24.8			
Actuated g/C Ratio	0.35	0.68		0.35	0.33	0.33			
v/c Ratio	0.29	0.26		0.47	0.66	0.09			
Control Delay	5.2	4.6		25.0	32.0	22.9			
Queue Delay	0.1	0.1		0.0	0.0	0.0			
Total Delay	5.2	4.7		25.0	32.0	22.9			
LOS	Α	Α		С	С	С			
Approach Delay	4.9			25.0	31.1				
Approach LOS	Α			С	С				
Queue Length 50th (ft)	8	21		111	186	18			
Queue Length 95th (ft)	12	81		178	295	43			
Internal Link Dist (ft)	150			167	209				
Turn Bay Length (ft)						100			
Base Capacity (vph)	834	1078		1298	891	813			
Starvation Cap Reductn	106	218		0	0	0			
Spillback Cap Reductn	0	0		0	0	0			
Storage Cap Reductn	0	0		0	0	0			
Reduced v/c Ratio	0.25	0.30		0.36	0.41	0.05			
Intersection Summary									
Area Type: Of	ther								
Cycle Length: 135.5									
Actuated Cycle Length: 75.3									
Natural Cycle: 90									
Control Type: Actuated-Uncoc	rdinated								
Maximum v/c Ratio: 0.66									
Intersection Signal Delay: 20.1					tersection				
Intersection Capacity Utilization	n 57.3%			IC	U Level o	of Service	В		
Analysis Period (min) 15									
Splits and Phases: 1: Fairfie	eld Ave &	Selleck S	st						
#1 #6	T			#1	#6			#1	#6
★ ★ ₀₂		l ø3			\			★	4 €
35.6 s		л н Ø3		34.6	- 104			40.3	Ø5
55.0 3	2.	, ,		34.0	-			10.0	

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स	₽	
Traffic Vol, veh/h	0	0	0	351	259	3
Future Vol, veh/h	0	0	0	351	259	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	_	-
Veh in Median Storage,		-	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	3	6	0
Mvmt Flow	0	0	0	382	282	3
IVIVIIIL FIOW	U	U	U	302	202	3
Major/Minor N	1inor2	N	//ajor1	N	/lajor2	
Conflicting Flow All	666	284	285	0		0
Stage 1	284			_	_	_
Stage 2	382	_	_	_	_	_
Critical Hdwy	6.4	6.2	4.1	_	_	_
Critical Hdwy Stg 1	5.4	- 0.2	-		<u>-</u>	_
	5.4			-		
Critical Hdwy Stg 2		-	-	-		-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	428	760	1289	-	-	-
Stage 1	769	-	-	-	-	-
Stage 2	694	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	428	760	1289	-	-	-
Mov Cap-2 Maneuver	428	-	-	-	-	-
Stage 1	769	-	-	-	-	-
Stage 2	694	_	_	_	_	_
g • =						
Δ			ND		0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
Minor Lane/Major Mumt		NDI	NPT	ERI n1	CDT	CDD
Minor Lane/Major Mymt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1289	-	-	-	-
Capacity (veh/h) HCM Lane V/C Ratio		1289	NBT - -	-	SBT - -	SBR - -
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1289 - 0	-	- - 0	-	-
Capacity (veh/h) HCM Lane V/C Ratio		1289	- -	-	-	-

Intersection						
Int Delay, s/veh	0.8					
		ED.D.	ND	NDT	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्स	^	2.1
Traffic Vol, veh/h	27	3	14	303	191	31
Future Vol, veh/h	27	3	14	303	191	31
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	4	0	6	1
Mvmt Flow	29	3	15	329	208	34
NA = : = :/NA::= = ::	N4:O		M-!1		4-10	
	Minor2		Major1		//ajor2	
Conflicting Flow All	584	225	242	0	-	0
Stage 1	225	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.14	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.236	-	-	-
Pot Cap-1 Maneuver	477	819	1313	-	-	-
Stage 1	817	-	-	-	-	-
Stage 2	711	-	-	_	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	470	819	1313	_	-	_
Mov Cap-2 Maneuver	470	-	-	_	_	_
Stage 1	806	_	_	_	_	_
Stage 2	711	_	_	_	_	_
Olage Z	111		_	_	•	
Approach	EB		NB		SB	
HCM Control Delay, s	12.9		0.3		0	
HCM LOS	В					
NAI	.1	ND	NDT	EDL 4	ODT	000
Minor Lane/Major Mvm	π	NBL		EBLn1	SBT	SBR
				101		-
Capacity (veh/h)		1313	-			
Capacity (veh/h) HCM Lane V/C Ratio		0.012	-	0.066	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s))	0.012 7.8	- 0	0.066 12.9	-	-
Capacity (veh/h) HCM Lane V/C Ratio		0.012	-	0.066		

Intersection						
Int Delay, s/veh	0.4					
		E5.5	NE	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	_		4	f)	
Traffic Vol, veh/h	11	5	0	306	194	0
Future Vol, veh/h	11	5	0	306	194	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	5	0	333	211	0
						_
	Minor2		Major1		/lajor2	
Conflicting Flow All	544	211	211	0	-	0
Stage 1	211	-	-	-	-	-
Stage 2	333	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	500	829	1360	-	_	-
Stage 1	824	-	-	-	-	-
Stage 2	726	_	_	_	_	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	500	829	1360		_	_
Mov Cap-1 Maneuver	500	029	1000	<u>-</u>	_	_
Stage 1	824	-	_	<u>-</u>		-
•			-	-		-
Stage 2	726	-	-	_	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.5		0		0	
HCM LOS	В					
110111 200						
Minor Lane/Major Mvm	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1360	_		_	_
HCM Lane V/C Ratio		-	_	0.03	_	_
HCM Control Delay (s)		0	_		_	_
HCM Lane LOS		A	_	В	_	_
HCM 95th %tile Q(veh)	0	_	0.1	_	_
Holvi Jour 70the Q(Veri)	U		0.1		_

Intersection						
Intersection Delay, s/veh	7.8					
Intersection LOS	7.0 A					
III.O.OOOIIOII EOO						
Mayamant	רחי	EDT	WDT	WDD	CDL	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		વ	\$	77	Y	٥٢
Traffic Vol, veh/h	52	30	52	77 77	39	95
Future Vol, veh/h	52	30	52	77	39	95
Peak Hour Factor Heavy Vehicles, %	0.92	0.92	0.92	0.92	0.92	0.92
Mvmt Flow	57	33	57	84	42	103
Number of Lanes	0	1	1	0	42	0
Number of Lanes		ı	•	0		0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	8.1		7.7		7.8	
HCM LOS	Α		Α		Α	
Lane		EBLn1	WBLn1	SBLn1		
Vol Left, %		63%	0%	29%		
Vol Thru, %		37%	40%	0%		
Vol Right, %		0%	60%	71%		
Sign Control		Stop	Stop	Stop		
Traffic Vol by Lane		82	129	134		
LT Vol		52	0	39		
Through Vol		30	52	0		
RT Vol		0	77	95		
Lane Flow Rate		89	140	146		
Geometry Grp		1	1	1		
Degree of Util (X)		0.11	0.151	0.164		
Departure Headway (Hd)		4.427	3.865	4.047		
Convergence, Y/N		Yes	Yes	Yes		
Сар		798	910	891		
Service Time		2.521	1.963	2.047		
HCM Lane V/C Ratio		0.112	0.154	0.164		
HCM Control Delay		8.1	7.7	7.8		
HCM Lane LOS HCM 95th-tile Q		0.4	A 0.5	A 0.6		
				Λ Λ		

	-	•	•	←	1	_			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Lane Configurations		7		414	ሻ	7			
Traffic Volume (vph)	331	237	21	292	350	47			
Future Volume (vph)	331	237	21	292	350	47			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Storage Length (ft)	,,,,,	0	0		0	100			
Storage Lanes		1	0		1	1			
Taper Length (ft)		•	25		25	•			
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	1.00			
Ped Bike Factor		0.97		1.00	0.98	,,,,,			
Frt		0.850				0.850			
Fit Protected				0.997	0.950				
Satd. Flow (prot)	1863	1583	0	3352	1770	1583			
Flt Permitted				0.917	0.950				
Satd. Flow (perm)	1863	1534	0	3080	1738	1583			
Right Turn on Red		No				No			
Satd. Flow (RTOR)									
Link Speed (mph)	25			25	25				
Link Distance (ft)	230			247	289				
Travel Time (s)	6.3			6.7	7.9				
Confl. Peds. (#/hr)		15	15		15				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Parking (#/hr)				0		<u> </u>			
Adj. Flow (vph)	360	258	23	317	380	51			
Shared Lane Traffic (%)									
Lane Group Flow (vph)	360	258	0	340	380	51			
Number of Detectors	0	0	1	1	1	1			
Detector Template			Left						
Leading Detector (ft)	0	0	20	45	45	45			
Trailing Detector (ft)	0	0	0	-5	5	5			
Detector 1 Position(ft)	0	0	0	-5	5	5			
Detector 1 Size(ft)	50	50	20	50	40	40			
Detector 1 Type	CI+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Turn Type	NA	pm+ov	Perm	NA	Prot	Perm			
Protected Phases	24	5		2	5		3	4	
Permitted Phases		2 4	2			5			
Detector Phase	2	2	2	2	5	5			
Switch Phase									
Minimum Initial (s)		5.0	15.0	15.0	5.0	5.0	7.0	5.0	
Minimum Split (s)		10.3	20.6	20.6	10.3	10.3	25.0	9.7	
Total Split (s)		34.3	28.6	28.6	34.3	34.3	25.0	28.7	
Total Split (%)		29.4%	24.5%	24.5%	29.4%	29.4%	21%	25%	
Maximum Green (s)		29.0	23.0	23.0	29.0	29.0	21.0	24.0	
Yellow Time (s)		3.0	3.6	3.6	3.0	3.0	4.0	3.6	
All-Red Time (s)		2.3	2.0	2.0	2.3	2.3	0.0	1.1	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0			

	-	\rightarrow	•	←	1	~			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Total Lost Time (s)		5.3		5.6	5.3	5.3			
Lead/Lag							Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	
Vehicle Extension (s)		2.5	2.0	2.0	2.5	2.5	3.0	2.5	
Recall Mode		None	Min	Min	None	None	None	None	
Walk Time (s)							7.0		
Flash Dont Walk (s)							14.0		
Pedestrian Calls (#/hr)							0		
Act Effct Green (s)	17.4	33.5		17.4	15.8	15.8			
Actuated g/C Ratio	0.39	0.76		0.39	0.36	0.36			
v/c Ratio	0.49	0.22		0.28	0.60	0.09			
Control Delay	13.4	1.2		10.3	16.8	10.6			
Queue Delay	0.2	0.0		0.0	0.0	0.0			
Total Delay	13.6	1.2		10.3	16.8	10.6			
LOS	В	Α		В	В	В			
Approach Delay	8.4			10.3	16.1				
Approach LOS	Α			В	В				
Queue Length 50th (ft)	65	0		29	70	8			
Queue Length 95th (ft)	136	0		58	166	28			
Internal Link Dist (ft)	150			167	209				
Turn Bay Length (ft)						100			
Base Capacity (vph)	983	1327		1626	1178	1054			
Starvation Cap Reductn	190	200		0	0	0			
Spillback Cap Reductn	0	0		0	0	0			
Storage Cap Reductn	0	0		0	0	0			
Reduced v/c Ratio	0.45	0.23		0.21	0.32	0.05			
Intersection Summary									
Area Type: O	ther								
Cycle Length: 116.6									
Actuated Cycle Length: 44.3									
Natural Cycle: 80									
Control Type: Actuated-Uncoc	ordinated								
Maximum v/c Ratio: 0.60									
Intersection Signal Delay: 11.3	3			In	tersection	LOS: B			
Intersection Capacity Utilization	n 52.5%			IC	U Level	of Service	Α		
Analysis Period (min) 15									
Splits and Phases: 1: Fairfie	eld Ave &	Selleck S	it						
#1 #6	1	3 2 3 3	-	#1	1 #6			#1	#6
★ ★	1.2	Ø3			16			•	44
-02	75 s	103			- (04		- A/	Ø5

Intersection						
Int Delay, s/veh	0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, A			र्स	Þ	
Traffic Vol, veh/h	2	0	0	250	232	0
Future Vol, veh/h	2	0	0	250	232	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	0	0	272	252	0
IVIVIIIL I IOVV		0	U	212	202	U
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	524	252	252	0	-	0
Stage 1	252	-	-	-	-	-
Stage 2	272	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	_
Critical Hdwy Stg 1	5.42	-		_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	2 218	_	_	_
Pot Cap-1 Maneuver	514	787	1313			
Stage 1	790	101	1010	<u>-</u>	_	
	774	-	-	-		-
Stage 2	774	-	-	-	-	-
Platoon blocked, %	F A A	707	1040	-	-	-
Mov Cap-1 Maneuver	514	787	1313	-	-	-
Mov Cap-2 Maneuver	514	-	-	-	-	-
Stage 1	790	-	-	-	-	-
Stage 2	774	-	-	-	-	-
Approach	EB		NB		SB	
	12					
HCM Control Delay, s			0		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1313	-		-	-
HCM Lane V/C Ratio		-		0.004	_	-
HCM Control Delay (s)		0	_	12	_	_
HCM Lane LOS				12 B		
	١	A	-		-	-
HCM 95th %tile Q(veh)	0	-	0	-	-

Internaction						
Intersection	0.0					
Int Delay, s/veh	8.0					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			र्स		
Traffic Vol, veh/h	32	0	0	204	189	14
Future Vol, veh/h	32	0	0	204	189	14
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	<u>-</u>	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	_	-	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	35	0	0	222	205	15
IVIVIII(I IOVV	00	U	U		200	10
Major/Minor	Minor2		Major1	N	//ajor2	
Conflicting Flow All	435	213	220	0	-	0
Stage 1	213	-	-	-	-	-
Stage 2	222	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	_	-	-
Critical Hdwy Stg 1	5.42	-	-	-	_	-
Critical Hdwy Stg 2	5.42	_	_	_	-	_
Follow-up Hdwy		3.318	2.218	_	_	_
Pot Cap-1 Maneuver	578	827	1349	_	_	_
Stage 1	823	-	-	_	_	_
Stage 2	815	_	_	_	_	_
Platoon blocked, %	010			_	_	_
	578	827	1349	_	_	_
Mov Cap-1 Maneuver	578	021	1349		-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	823	-	-	-	-	-
Stage 2	815	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.6		0		0	
HCM LOS	В					
NA: 1 /NA: NA		NDI	NDT	EDL 4	ODT	000
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1349	-	578	-	-
						-
HCM Lane V/C Ratio		-	-	0.06	-	
HCM Lane V/C Ratio HCM Control Delay (s))	0	-	11.6	-	-
HCM Lane V/C Ratio						- -

Intersection						
Int Delay, s/veh	0.4					
					05-	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्स	ĵ.	
Traffic Vol, veh/h	14	2	0	190	189	0
Future Vol, veh/h	14	2	0	190	189	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	15	2	0	207	205	0
N. A (N. A.)						
	Minor2		Major1		/lajor2	
Conflicting Flow All	412	205	205	0	-	0
Stage 1	205	-	-	-	-	-
Stage 2	207	-	-	_	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	_	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	596	836	1366	-	-	-
Stage 1	829	_	_	-	_	_
Stage 2	828	_	-	-	-	_
Platoon blocked, %	,_,			-	_	_
Mov Cap-1 Maneuver	596	836	1366	_	_	_
Mov Cap-1 Maneuver	596	-	1000	_	_	
Stage 1	829	-	-	-	<u>-</u>	-
•	828	-	-	-	-	-
Stage 2	020	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11		0		0	
HCM LOS	В					
				-D	05-	055
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1366	-		-	-
HCM Lane V/C Ratio		-	-	0.028	-	-
HCM Control Delay (s)		0	-	11	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-
	•					

Intersection Delay, s/veh Intersection LOS	Intersection						
Intersection LOS		8.5					
Movement EBL EBT WBT WBR SBL SBR Lane Configurations → → → ✓							
Lane Configurations							
Lane Configurations	Mayamant	EDI	FDT	WDT	WDD	CDL	CDD
Traffic Vol, veh/h 148 42 29 43 67 50 Future Vol, veh/h 148 42 29 43 67 50 Peak Hour Factor 0.92 0.83 8 EB WB SB BB BB BB CDR 0.92 0.92 0.92 0.92 0.92		ERL			WBK		SBK
Future Vol, veh/h 148 42 29 43 67 50 Peak Hour Factor 0.92		4.40			40		
Peak Hour Factor 0.92 0.93 0.93 0.94 CH							
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2	·						
Mvmt Flow 161 46 32 47 73 54 Number of Lanes 0 1 1 0 1 0 Approach EB WB SB BB BB BB Opposing Approach WB EB WB Conflicting Approach Left SB WB Conflicting Lanes Left 1 0 1							
Number of Lanes 0 1 1 0 1 0 Approach EB WB SB Opposing Approach WB EB Opposing Lanes 1 1 0 Conflicting Approach Left SB WB Conflicting Lanes Left 1 0 1 Conflicting Approach Right SB EB EB Conflicting Lanes Right 0 1 1 1 HCM Control Delay 9 7.5 8.3 A HCM LOS A A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148							
Approach EB WB SB Opposing Approach WB EB Opposing Lanes 1 1 0 Conflicting Approach Left SB WB Conflicting Lanes Left 1 0 1 Conflicting Approach Right SB EB Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A A A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop							
Opposing Approach WB EB Opposing Lanes 1 1 0 Conflicting Approach Left SB WB Conflicting Lanes Left 1 0 1 Conflicting Approach Right SB EB Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1	Number of Lanes	0	1	1	0	1	0
Opposing Lanes 1 1 0 Conflicting Approach Left SB WB Conflicting Lanes Left 1 0 1 Conflicting Approach Right SB EB Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A A A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 <	Approach	EB		WB		SB	
Opposing Lanes 1 1 0 Conflicting Approach Left SB WB Conflicting Lanes Left 1 0 1 Conflicting Approach Right SB EB Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A A A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Stop Stop Stop Stop Stop	Opposing Approach	WB		EB			
Conflicting Approach Left SB WB Conflicting Lanes Left 1 0 1 Conflicting Approach Right SB EB Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A A A A A Lane EBLn1 WBLn1 SBLn1 Vol Lott, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089				1		0	
Conflicting Lanes Left 1 0 1 Conflicting Approach Right SB EB Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A A A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.							
Conflicting Approach Right SB EB Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A A A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Ye				0			
Conflicting Lanes Right 0 1 1 HCM Control Delay 9 7.5 8.3 HCM LOS A A A Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1							
HCM Control Delay 9 7.5 8.3 HCM LOS A		0					
Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3							
Lane EBLn1 WBLn1 SBLn1 Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3							
Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A							
Vol Left, % 78% 0% 57% Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A							
Vol Thru, % 22% 40% 0% Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Lana		EDI n4	M/DI n4	CDI n1		
Vol Right, % 0% 60% 43% Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A							
Sign Control Stop Stop Stop Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, %		78%	0%	57%		
Traffic Vol by Lane 190 72 117 LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, %		78% 22%	0% 40%	57% 0%		
LT Vol 148 0 67 Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, %		78% 22% 0%	0% 40% 60%	57% 0% 43%		
Through Vol 42 29 0 RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control		78% 22% 0% Stop	0% 40% 60% Stop	57% 0% 43% Stop		
RT Vol 0 43 50 Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		78% 22% 0% Stop 190	0% 40% 60% Stop 72	57% 0% 43% Stop 117		
Lane Flow Rate 207 78 127 Geometry Grp 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		78% 22% 0% Stop 190 148	0% 40% 60% Stop 72 0	57% 0% 43% Stop 117 67		
Geometry Grp 1 1 1 1 Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		78% 22% 0% Stop 190 148 42	0% 40% 60% Stop 72 0 29	57% 0% 43% Stop 117 67		
Degree of Util (X) 0.257 0.089 0.157 Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		78% 22% 0% Stop 190 148 42	0% 40% 60% Stop 72 0 29 43	57% 0% 43% Stop 117 67 0		
Departure Headway (Hd) 4.48 4.097 4.435 Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		78% 22% 0% Stop 190 148 42 0 207	0% 40% 60% Stop 72 0 29 43 78	57% 0% 43% Stop 117 67 0 50 127		
Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		78% 22% 0% Stop 190 148 42 0 207	0% 40% 60% Stop 72 0 29 43 78	57% 0% 43% Stop 117 67 0 50 127		
Convergence, Y/N Yes Yes Yes Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		78% 22% 0% Stop 190 148 42 0 207 1 0.257	0% 40% 60% Stop 72 0 29 43 78 1	57% 0% 43% Stop 117 67 0 50 127 1 0.157		
Cap 808 876 810 Service Time 2.48 2.115 2.452 HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		78% 22% 0% Stop 190 148 42 0 207 1 0.257	0% 40% 60% Stop 72 0 29 43 78 1	57% 0% 43% Stop 117 67 0 50 127 1 0.157		
HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		78% 22% 0% Stop 190 148 42 0 207 1 0.257 4.48	0% 40% 60% Stop 72 0 29 43 78 1 0.089 4.097	57% 0% 43% Stop 117 67 0 50 127 1 0.157 4.435		
HCM Lane V/C Ratio 0.256 0.089 0.157 HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		78% 22% 0% Stop 190 148 42 0 207 1 0.257 4.48 Yes	0% 40% 60% Stop 72 0 29 43 78 1 0.089 4.097 Yes	57% 0% 43% Stop 117 67 0 50 127 1 0.157 4.435 Yes		
HCM Control Delay 9 7.5 8.3 HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		78% 22% 0% Stop 190 148 42 0 207 1 0.257 4.48 Yes 808	0% 40% 60% Stop 72 0 29 43 78 1 0.089 4.097 Yes 876	57% 0% 43% Stop 117 67 0 50 127 1 0.157 4.435 Yes 810		
HCM Lane LOS A A A	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		78% 22% 0% Stop 190 148 42 0 207 1 0.257 4.48 Yes 808 2.48	0% 40% 60% Stop 72 0 29 43 78 1 0.089 4.097 Yes 876 2.115	57% 0% 43% Stop 117 67 0 50 127 1 0.157 4.435 Yes 810 2.452		
	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		78% 22% 0% Stop 190 148 42 0 207 1 0.257 4.48 Yes 808 2.48 0.256	0% 40% 60% Stop 72 0 29 43 78 1 0.089 4.097 Yes 876 2.115 0.089	57% 0% 43% Stop 117 67 0 50 127 1 0.157 4.435 Yes 810 2.452 0.157		
	Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		78% 22% 0% Stop 190 148 42 0 207 1 0.257 4.48 Yes 808 2.48 0.256	0% 40% 60% Stop 72 0 29 43 78 1 0.089 4.097 Yes 876 2.115 0.089 7.5	57% 0% 43% Stop 117 67 0 50 127 1 0.157 4.435 Yes 810 2.452 0.157 8.3		

	→	•	1	←	1	~			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Lane Configurations		7		414	ሻ	7			
Traffic Volume (vph)	166	258	62	379	341	45			
Future Volume (vph)	166	258	62	379	341	45			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Storage Length (ft)		0	0		0	100			
Storage Lanes		1	0		1	1			
Taper Length (ft)			25		25				
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	1.00			
Ped Bike Factor		0.97		1.00	0.99	0.96			
Frt		0.850				0.850			
Flt Protected				0.993	0.950				
Satd. Flow (prot)	1827	1495	0	3153	1671	1583			
Flt Permitted				0.878	0.950				
Satd. Flow (perm)	1827	1456	0	2782	1654	1525			
Right Turn on Red		No				No			
Satd. Flow (RTOR)									
Link Speed (mph)	25			25	25				
Link Distance (ft)	230			247	185				
Travel Time (s)	6.3			6.7	5.0				
Confl. Peds. (#/hr)		9	9		9	9			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Heavy Vehicles (%)	4%	8%	2%	9%	8%	2%			
Parking (#/hr)				0					
Adj. Flow (vph)	180	280	67	412	371	49			
Shared Lane Traffic (%)									
Lane Group Flow (vph)	180	280	0	479	371	49			
Number of Detectors	0	0	1	1	1	1			
Detector Template			Left						
Leading Detector (ft)	0	0	20	45	45	45			
Trailing Detector (ft)	0	0	0	-5	5	5			
Detector 1 Position(ft)	0	0	0	-5	5	5			
Detector 1 Size(ft)	50	50	20	50	40	40			
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Turn Type	NA	pm+ov	Perm	NA	Prot	Perm			
Protected Phases	2 4	5		2	5		3	4	
Permitted Phases		2 4	2			5			
Detector Phase	2	2	2	2	5	5			
Switch Phase									
Minimum Initial (s)		5.0	15.0	15.0	5.0	5.0	7.0	5.0	
Minimum Split (s)		10.3	20.6	20.6	10.3	10.3	25.0	9.7	
Total Split (s)		40.3	35.6	35.6	40.3	40.3	25.0	34.6	
Total Split (%)		29.7%	26.3%	26.3%	29.7%	29.7%	18%	26%	
Maximum Green (s)		35.0	30.0	30.0	35.0	35.0	21.0	29.9	
Yellow Time (s)		3.0	3.6	3.6	3.0	3.0	4.0	3.6	
All-Red Time (s)		2.3	2.0	2.0	2.3	2.3	0.0	1.1	

	→	•	•	←	4	/			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0			
Total Lost Time (s)		5.3		5.6	5.3	5.3			
Lead/Lag							Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	
Vehicle Extension (s)		2.5	2.0	2.0	2.5	2.5	3.0	2.5	
Recall Mode		None	Min	Min	None	None	None	None	
Walk Time (s)							7.0		
Flash Dont Walk (s)							14.0		
Pedestrian Calls (#/hr)							44		
Act Effct Green (s)	27.1	53.1		27.1	25.7	25.7			
Actuated g/C Ratio	0.35	0.69		0.35	0.33	0.33			
v/c Ratio	0.28	0.28		0.49	0.67	0.10			
Control Delay	5.1	5.4		25.6	32.6	23.0			
Queue Delay	0.1	0.1		0.0	0.0	0.0			
Total Delay	5.2	5.6		25.6	32.6	23.0			
LOS	Α	Α		С	С	С			
Approach Delay	5.4			25.6	31.5				
Approach LOS	Α			С	С				
Queue Length 50th (ft)	8	31		118	199	21			
Queue Length 95th (ft)	12	94		188	301	47			
Internal Link Dist (ft)	150			167	105				
Turn Bay Length (ft)						100			
Base Capacity (vph)	806	1074		1228	860	785			
Starvation Cap Reductn	121	226		0	0	0			
Spillback Cap Reductn	0	0		0	0	0			
Storage Cap Reductn	0	0		0	0	0			
Reduced v/c Ratio	0.26	0.33		0.39	0.43	0.06			
Intersection Summary									
	ther								
Cycle Length: 135.5									
Actuated Cycle Length: 77.3									
Natural Cycle: 90									
Control Type: Actuated-Uncod	ordinated								
Maximum v/c Ratio: 0.67									
Intersection Signal Delay: 20.6					tersectior				
Intersection Capacity Utilization	n 57.6%			IC	U Level o	of Service	В		
Analysis Period (min) 15									
Splits and Phases: 1: Fairfie	ald Ave &	Selleck S	:						
#1 #22		OGIIGUN O	,,	#1	#22			#1	#22
**************************************		ł Pø3		71	1/2			# L	4 *
-02		л №03		-	704	+		**Y	Ø5

Intersection						
Int Delay, s/veh	0.2					
					05=	05-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	₽	
Traffic Vol, veh/h	2	4	11	359	274	11
Future Vol, veh/h	2	4	11	359	274	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	3	6	0
Mvmt Flow	2	4	12	390	298	12
NA - 1 - /NA1	1' - 2		1.1.4		4.1.0	
	Minor2		Major1		/lajor2	
Conflicting Flow All	718	304	310	0	-	0
Stage 1	304	-	-	-	-	-
Stage 2	414	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	399	740	1262	-	-	-
Stage 1	753	-	-	_	-	-
Stage 2	671	-	_	-	_	_
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	394	740	1262	_	_	-
Mov Cap-2 Maneuver	394	- 10		_	_	_
Stage 1	744	_	_	_	_	_
Stage 2	671		_		_	_
Slaye Z	0/ 1	<u>-</u>	<u>-</u>	_	_	<u>-</u>
Approach	EB		NB		SB	
HCM Control Delay, s	11.4		0.2		0	
HCM LOS	В					
					055	055
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1262	-	· · · -	-	-
HCM Lane V/C Ratio		0.009	-	0.011	-	-
HCM Control Delay (s)		7.9	0	11.4	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-

Intersection						
Int Delay, s/veh	1.1					
			ND	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	_		4	^	
Traffic Vol, veh/h	31	7	24	318	197	44
Future Vol, veh/h	31	7	24	318	197	44
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	4	0	6	1
Mvmt Flow	34	8	26	346	214	48
Maiau/Minau	l:O		14-:4		4-10	
	linor2		Major1		//ajor2	
Conflicting Flow All	636	238	262	0	-	0
Stage 1	238	-	-	-	-	-
Stage 2	398	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.14	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.236	-	-	-
Pot Cap-1 Maneuver	445	806	1291	-	-	-
Stage 1	806	-	-	-	-	-
Stage 2	683	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	434	806	1291	-	-	-
Mov Cap-2 Maneuver	434	-	-	-	-	-
Stage 1	786	_	_	_	_	-
Stage 2	683	_	_	_	_	_
Jugg L	000					
Approach	EB		NB		SB	
HCM Control Delay, s	13.3		0.6		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBL	NRT	EBLn1	SBT	SBR
			INDI		ODI	ODIN
Capacity (veh/h)		1291		474 0.087	-	
HCM Central Delay (a)		0.02			-	-
HCM Long LOS		7.8	0	13.3	-	-
HCM Lane LOS HCM 95th %tile Q(veh)		A	Α	В	-	-
HUIVI YATA WILLE (JAVAN)		0.1	-	0.3	-	-

Intersection						
Int Delay, s/veh	0.4					
		E5.5	No	Not	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	À	_		4	ĵ.	
Traffic Vol, veh/h	11	5	3	331	171	33
Future Vol, veh/h	11	5	3	331	171	33
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	5	3	360	186	36
N.A ' /N.A.'	M:				4.'. 0	
	Minor2		Major1		/lajor2	
Conflicting Flow All	570	204	222	0	-	0
Stage 1	204	-	-	-	-	-
Stage 2	366	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	483	837	1347	-	-	-
Stage 1	830	-	-	-	-	-
Stage 2	702	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	482	837	1347	-	-	-
Mov Cap-2 Maneuver	482	-	-	-	_	-
Stage 1	828	_	_	_	_	_
Stage 2	702	_	-	_	_	_
Olugo Z	102					
Approach	EB		NB		SB	
HCM Control Delay, s	11.7		0.1		0	
HCM LOS	В					
Minor Lane/Major Mvm	.+	NBL	NDT	EBLn1	SBT	SBR
	ıı					SDIX
Capacity (veh/h)		1347	-	000	-	-
HCM Control Polov (a)		0.002		0.031	-	-
HCM Control Delay (s)		7.7	0		-	-
		Α	Α	В	-	-
HCM Lane LOS HCM 95th %tile Q(veh		0	_	0.1	_	_

Intersection						
Intersection Delay, s/veh	8					
Intersection LOS	A					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	CDL			WDK	SDL W	SDR
Lane Configurations	66	ब 30	1 → 52	88		101
Traffic Vol, veh/h Future Vol, veh/h	66	30	52 52	88	43 43	101
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	0.92	0.92	0.92	0.92	0.92	0.92
Mymt Flow	72	33	57	96	47	110
Number of Lanes	0	1	1	90	1	0
		1	•	U	•	U
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	8.3		7.8		8	
HCM LOS	Α		Α		Α	
Lane		EBLn1	WBLn1	SBLn1		
Lane Vol Left, %		EBLn1 69%	WBLn1	30%		
			0% 37%	30% 0%		
Vol Left, %		69%	0%	30%		
Vol Left, % Vol Thru, %		69% 31% 0% Stop	0% 37% 63% Stop	30% 0% 70% Stop		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		69% 31% 0% Stop 96	0% 37% 63%	30% 0% 70% Stop 144		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		69% 31% 0% Stop 96 66	0% 37% 63% Stop 140	30% 0% 70% Stop 144 43		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		69% 31% 0% Stop 96 66 30	0% 37% 63% Stop 140 0 52	30% 0% 70% Stop 144 43		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		69% 31% 0% Stop 96 66 30	0% 37% 63% Stop 140 0 52	30% 0% 70% Stop 144 43 0		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		69% 31% 0% Stop 96 66 30 0	0% 37% 63% Stop 140 0 52	30% 0% 70% Stop 144 43 0 101		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		69% 31% 0% Stop 96 66 30 0 104	0% 37% 63% Stop 140 0 52 88 152	30% 0% 70% Stop 144 43 0		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		69% 31% 0% Stop 96 66 30 0 104 1	0% 37% 63% Stop 140 0 52 88 152 1	30% 0% 70% Stop 144 43 0 101 157 1		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		69% 31% 0% Stop 96 66 30 0 104	0% 37% 63% Stop 140 0 52 88 152	30% 0% 70% Stop 144 43 0 101 157		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		69% 31% 0% Stop 96 66 30 0 104 1 0.133 4.578 Yes	0% 37% 63% Stop 140 0 52 88 152 1 0.168 3.981 Yes	30% 0% 70% Stop 144 43 0 101 157 1 0.179 4.112 Yes		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		69% 31% 0% Stop 96 66 30 0 104 1 0.133 4.578 Yes 788	0% 37% 63% Stop 140 0 52 88 152 1 0.168 3.981 Yes 904	30% 0% 70% Stop 144 43 0 101 157 1 0.179 4.112 Yes 875		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		69% 31% 0% Stop 96 66 30 0 104 1 0.133 4.578 Yes	0% 37% 63% Stop 140 0 52 88 152 1 0.168 3.981 Yes	30% 0% 70% Stop 144 43 0 101 157 1 0.179 4.112 Yes		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		69% 31% 0% Stop 96 66 30 0 104 1 0.133 4.578 Yes 788	0% 37% 63% Stop 140 0 52 88 152 1 0.168 3.981 Yes 904	30% 0% 70% Stop 144 43 0 101 157 1 0.179 4.112 Yes 875		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		69% 31% 0% Stop 96 66 30 0 104 1 0.133 4.578 Yes 788 2.578	0% 37% 63% Stop 140 0 52 88 152 1 0.168 3.981 Yes 904 1.995	30% 0% 70% Stop 144 43 0 101 157 1 0.179 4.112 Yes 875 2.127 0.179 8		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		69% 31% 0% Stop 96 66 30 0 104 1 0.133 4.578 Yes 788 2.578 0.132	0% 37% 63% Stop 140 0 52 88 152 1 0.168 3.981 Yes 904 1.995 0.168	30% 0% 70% Stop 144 43 0 101 157 1 0.179 4.112 Yes 875 2.127 0.179		

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	₽	
Traffic Vol, veh/h	5	2	4	381	308	12
Future Vol, veh/h	5	2	4	381	308	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	_	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	5	2	4	414	335	13
WWW.CT IOW	J	_	•		000	10
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	764	342	348	0	-	0
Stage 1	342	-	-	-	-	-
Stage 2	422	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	_	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	2 218	_	_	_
Pot Cap-1 Maneuver	372	701	1211	_	_	_
Stage 1	719	-	-	_	_	_
Stage 2	662	_	_	_	_	_
Platoon blocked, %	002	_	_	<u>-</u>	_	_
	371	701	1211			-
Mov Cap-1 Maneuver				-		
Mov Cap-2 Maneuver	371	-	-	-	-	-
Stage 1	716	-	-	-	-	-
Stage 2	662	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.5		0.1		0	
HCM LOS	В		0.1			
TIOW LOO						
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1211	-	429	-	-
HCM Lane V/C Ratio		0.004	-	0.018	-	-
HCM Control Delay (s)	8	0	13.5	-	-
HCM Lane LOS		A	A	В	-	-
HCM 95th %tile Q(veh	1)	0	_	0.1	_	-
Sin ooar 70alo Q(Voi	,	- 3		J. 1		

	-	•	•	←	1	~			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Lane Configurations	†	7		414	*	7			
Traffic Volume (vph)	331	247	28	292	363	57			
Future Volume (vph)	331	247	28	292	363	57			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Storage Length (ft)		0	0		0	100			
Storage Lanes		1	0		1	1			
Taper Length (ft)			25		25				
Lane Util. Factor	1.00	1.00	0.95	0.95	1.00	1.00			
Ped Bike Factor		0.97		1.00	0.98				
Frt		0.850				0.850			
Flt Protected				0.996	0.950				
Satd. Flow (prot)	1863	1583	0	3349	1770	1583			
FIt Permitted				0.905	0.950				
Satd. Flow (perm)	1863	1534	0	3038	1738	1583			
Right Turn on Red		No				No			
Satd. Flow (RTOR)									
Link Speed (mph)	25			25	25				
Link Distance (ft)	230			247	185				
Travel Time (s)	6.3			6.7	5.0				
Confl. Peds. (#/hr)		15	15		15				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Parking (#/hr)				0					
Adj. Flow (vph)	360	268	30	317	395	62			
Shared Lane Traffic (%)									
Lane Group Flow (vph)	360	268	0	347	395	62			
Number of Detectors	0	0	1	1	1	1			
Detector Template			Left						
Leading Detector (ft)	0	0	20	45	45	45			
Trailing Detector (ft)	0	0	0	-5	5	5			
Detector 1 Position(ft)	0	0	0	-5	5	5			
Detector 1 Size(ft)	50	50	20	50	40	40			
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex			
Detector 1 Channel									
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0			
Turn Type	NA	pm+ov	Perm	NA	Prot	Perm			
Protected Phases	2 4	5		2	5		3	4	
Permitted Phases		2 4	2			5			
Detector Phase	2	2	2	2	5	5			
Switch Phase									
Minimum Initial (s)		5.0	15.0	15.0	5.0	5.0	7.0	5.0	
Minimum Split (s)		10.3	20.6	20.6	10.3	10.3	25.0	9.7	
Total Split (s)		34.3	28.6	28.6	34.3	34.3	25.0	28.7	
Total Split (%)		29.4%	24.5%	24.5%	29.4%	29.4%	21%	25%	
Maximum Green (s)		29.0	23.0	23.0	29.0	29.0	21.0	24.0	
Yellow Time (s)		3.0	3.6	3.6	3.0	3.0	4.0	3.6	
All-Red Time (s)		2.3	2.0	2.0	2.3	2.3	0.0	1.1	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0			

	-	\rightarrow	•	←	1	~			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø3	Ø4	
Total Lost Time (s)		5.3		5.6	5.3	5.3			
Lead/Lag							Lead	Lag	
Lead-Lag Optimize?							Yes	Yes	
Vehicle Extension (s)		2.5	2.0	2.0	2.5	2.5	3.0	2.5	
Recall Mode		None	Min	Min	None	None	None	None	
Walk Time (s)							7.0		
Flash Dont Walk (s)							14.0		
Pedestrian Calls (#/hr)							0		
Act Effct Green (s)	21.0	39.0		21.0	17.7	17.7			
Actuated g/C Ratio	0.42	0.78		0.42	0.36	0.36			
v/c Ratio	0.46	0.22		0.27	0.63	0.11			
Control Delay	5.6	1.0		10.3	18.9	11.8			
Queue Delay	0.0	0.1		0.0	0.0	0.0			
Total Delay	5.6	1.0		10.3	18.9	11.8			
LOS	Α	Α		В	В	В			
Approach Delay	3.7			10.3	18.0				
Approach LOS	Α			В	В				
Queue Length 50th (ft)	16	0		33	99	13			
Queue Length 95th (ft)	24	8		61	173	32			
Internal Link Dist (ft)	150			167	105				
Turn Bay Length (ft)						100			
Base Capacity (vph)	873	1273		1424	1046	935			
Starvation Cap Reductn	32	206		0	0	0			
Spillback Cap Reductn	0	0		0	0	0			
Storage Cap Reductn	0	0		0	0	0			
Reduced v/c Ratio	0.43	0.25		0.24	0.38	0.07			
Intersection Summary									
	Other								
Cycle Length: 116.6									
Actuated Cycle Length: 49.7									
Natural Cycle: 90									
Control Type: Actuated-Unco	ordinated								
Maximum v/c Ratio: 0.63									
Intersection Signal Delay: 9.8					tersectior				
Intersection Capacity Utilizati	ion 58.9%			IC	U Level o	of Service	В		
Analysis Period (min) 15									
Splits and Phases: 1: Fairf	field Ave &	Selleck S	t						
#1 #22				#1	#22			#1	#22
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$. j	ø3		-	→	34		3	Ø5
20.6 -	25 s			20	7.0			24.2	

Intersection Int Delay, s/veh Movement						
Movement	0.5					
Lana Canfinunations	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- 14			र्स	₽	
Traffic Vol, veh/h	8	9	6	261	241	3
Future Vol, veh/h	8	9	6	261	241	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	_	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	9	10	7	284	262	3
IVIVITIT FIOW	9	10	1	204	202	3
Major/Minor	Minor2	1	Major1	N	/lajor2	
Conflicting Flow All	562	264	265	0	-	0
Stage 1	264	-	-	_	_	-
Stage 2	298	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12		_	_
•	5.42					
Critical Hdwy Stg 1		-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy			2.218	-	-	-
Pot Cap-1 Maneuver	488	775	1299	-	-	-
Stage 1	780	-	-	-	-	-
Stage 2	753	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	485	775	1299	-	-	-
	485	-	-	-	_	-
Mov Cap-2 Maneuver						
Mov Cap-2 Maneuver	775	_	_	_	_	_
Stage 1	775 753	- -		-	-	-
•	775 753	-	- -	-		-
Stage 1 Stage 2	753	-	-	-	-	-
Stage 1	753 EB	-	- NB	-	SB	-
Stage 1 Stage 2 Approach HCM Control Delay, s	753	-	-	-	-	-
Stage 1 Stage 2 Approach	753 EB	-	- NB	-	SB	-
Stage 1 Stage 2 Approach HCM Control Delay, s	753 EB 11.1	-	- NB	-	SB	-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	753 EB 11.1 B		NB 0.2	- -	SB 0	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mym	753 EB 11.1 B	- - - NBL	NB 0.2	EBLn1	SB	SBR
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	753 EB 11.1 B	1299	NB 0.2	605	SB 0	SBR -
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	753 EB 11.1 B	1299 0.005	NB 0.2	605 0.031	SB 0	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	753 EB 11.1 B	1299 0.005 7.8	NB 0.2 NBT I	605 0.031 11.1	SB 0	SBR -
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	753 EB 11.1 B	1299 0.005	NB 0.2	605 0.031	SB 0	SBR -

Intersection						
Int Delay, s/veh	1.3					
		E5.5	NE	NET	057	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			सी		
Traffic Vol, veh/h	41	7	5	212	200	21
Future Vol, veh/h	41	7	5	212	200	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	45	8	5	230	217	23
	14: 6					
Major/Minor	Minor2		Major1		//ajor2	
Conflicting Flow All	469	229	240	0	-	0
Stage 1	229	-	-	-	-	-
Stage 2	240	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	553	810	1327	-	-	-
Stage 1	809	-	-	-	-	-
Stage 2	800	-	-	-	-	-
Platoon blocked, %				_	-	-
Mov Cap-1 Maneuver	551	810	1327	_	_	-
Mov Cap 1 Maneuver		-		_	_	_
Stage 1	806	_	_	_	_	_
Stage 2	800	_	_	_	_	_
Olaye Z	500				•	
Approach	EB		NB		SB	
HCM Control Delay, s	11.8		0.2		0	
HCM LOS	В					
NAC 1 /NA - 2 NA	. 1	NDI	NDT	EDL 4	ODT	000
Minor Lane/Major Mvr	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1327	-		-	-
HCM Lane V/C Ratio		0.004	-	0.09	-	-
HCM Control Delay (s		7.7	0	11.8	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh	1)	0	-	0.3	-	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	₽	
Traffic Vol, veh/h	14	2	2	203	179	28
Future Vol, veh/h	14	2	2	203	179	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	15	2	2	221	195	30
IVIVIII(I IOVV	10			ZZ 1	100	30
Major/Minor	Minor2	1	Major1	N	//ajor2	
Conflicting Flow All	435	210	225	0	-	0
Stage 1	210	-	-	-	-	-
Stage 2	225	_	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	-		_	_	_
Critical Hdwy Stg 2	5.42	_			_	_
Follow-up Hdwy		3.318	2.218	_	_	_
Pot Cap-1 Maneuver	578	830	1344	-		
	825	000	1344	-		
Stage 1		-	-	-	-	-
Stage 2	812	-	-	-	-	-
Platoon blocked, %		000	40.17	-	-	-
Mov Cap-1 Maneuver	577	830	1344	-	-	-
Mov Cap-2 Maneuver	577	-	-	-	-	-
Stage 1	823	-	-	-	-	-
Stage 2	812	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.2		0.1		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1344		600		-
HCM Lane V/C Ratio		0.002		0.029	_	_
HCM Control Delay (s)	\	7.7	0	11.2		
HCM Lane LOS					-	-
		A	Α	B	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

Intersection						
Intersection Delay, s/veh	8.7					
Intersection LOS	A					
Mayamant	EDI	EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	450	<u>ન</u>	}	40	Y	-00
Traffic Vol, veh/h	156	42	29	48	75	60
Future Vol, veh/h	156	42	29	48	75	60
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	170	46	32	52	82	65
Number of Lanes	0	1	1	0	1	0
Approach	EB		WB		SB	
Opposing Approach	WB		EB			
Opposing Lanes	1		1		0	
Conflicting Approach Left	SB				WB	
Conflicting Lanes Left	1		0		1	
Conflicting Approach Right			SB		EB	
Conflicting Lanes Right	0		1		1	
HCM Control Delay	9.2		7.6		8.5	
HCM LOS	Α		Α.		Α	
	- 11		- / \		- 1	
		ED! 4	WDL	ODL 4		
Lane		EBLn1	WBLn1	SBLn1		
Vol Left, %		79%	0%	56%		
Vol Left, % Vol Thru, %		79% 21%	0% 38%	56% 0%		
Vol Left, % Vol Thru, % Vol Right, %		79% 21% 0%	0% 38% 62%	56% 0% 44%		
Vol Left, % Vol Thru, % Vol Right, % Sign Control		79% 21% 0% Stop	0% 38% 62% Stop	56% 0% 44% Stop		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		79% 21% 0% Stop 198	0% 38% 62% Stop 77	56% 0% 44% Stop 135		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		79% 21% 0% Stop 198 156	0% 38% 62% Stop 77	56% 0% 44% Stop 135 75		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		79% 21% 0% Stop 198 156 42	0% 38% 62% Stop 77 0 29	56% 0% 44% Stop 135 75		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		79% 21% 0% Stop 198 156 42	0% 38% 62% Stop 77 0 29 48	56% 0% 44% Stop 135 75 0		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		79% 21% 0% Stop 198 156 42	0% 38% 62% Stop 77 0 29	56% 0% 44% Stop 135 75		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		79% 21% 0% Stop 198 156 42	0% 38% 62% Stop 77 0 29 48	56% 0% 44% Stop 135 75 0		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		79% 21% 0% Stop 198 156 42 0 215	0% 38% 62% Stop 77 0 29 48 84	56% 0% 44% Stop 135 75 0 60		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		79% 21% 0% Stop 198 156 42 0 215	0% 38% 62% Stop 77 0 29 48 84	56% 0% 44% Stop 135 75 0 60 147		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		79% 21% 0% Stop 198 156 42 0 215 1	0% 38% 62% Stop 77 0 29 48 84 1	56% 0% 44% Stop 135 75 0 60 147 1 0.182		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		79% 21% 0% Stop 198 156 42 0 215 1 0.27 4.522 Yes	0% 38% 62% Stop 77 0 29 48 84 1 0.096 4.143 Yes	56% 0% 44% Stop 135 75 0 60 147 1 0.182 4.458		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		79% 21% 0% Stop 198 156 42 0 215 1 0.27 4.522 Yes 796	0% 38% 62% Stop 77 0 29 48 84 1 0.096 4.143 Yes 866	56% 0% 44% Stop 135 75 0 60 147 1 0.182 4.458 Yes 807		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		79% 21% 0% Stop 198 156 42 0 215 1 0.27 4.522 Yes 796 2.539	0% 38% 62% Stop 77 0 29 48 84 1 0.096 4.143 Yes 866 2.163	56% 0% 44% Stop 135 75 0 60 147 1 0.182 4.458 Yes 807 2.475		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		79% 21% 0% Stop 198 156 42 0 215 1 0.27 4.522 Yes 796 2.539 0.27	0% 38% 62% Stop 77 0 29 48 84 1 0.096 4.143 Yes 866 2.163 0.097	56% 0% 44% Stop 135 75 0 60 147 1 0.182 4.458 Yes 807 2.475 0.182		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		79% 21% 0% Stop 198 156 42 0 215 1 0.27 4.522 Yes 796 2.539 0.27 9.2	0% 38% 62% Stop 77 0 29 48 84 1 0.096 4.143 Yes 866 2.163 0.097 7.6	56% 0% 44% Stop 135 75 0 60 147 1 0.182 4.458 Yes 807 2.475 0.182 8.5		
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		79% 21% 0% Stop 198 156 42 0 215 1 0.27 4.522 Yes 796 2.539 0.27	0% 38% 62% Stop 77 0 29 48 84 1 0.096 4.143 Yes 866 2.163 0.097	56% 0% 44% Stop 135 75 0 60 147 1 0.182 4.458 Yes 807 2.475 0.182		

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, M			र्स	₽	
Traffic Vol, veh/h	8	2	2	412	268	7
Future Vol, veh/h	8	2	2	412	268	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	_	_	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	9	2	2	448	291	8
IVIVIII I IOW	J			770	201	U
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	747	295	299	0	-	0
Stage 1	295	-	-	-	-	-
Stage 2	452	-	-	-	_	-
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	-	-	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy			2.218	_	_	_
Pot Cap-1 Maneuver	381	744	1262		_	_
Stage 1	755	144	1202	_		
	641	_	_	-		
Stage 2	041	-	-	-	-	-
Platoon blocked, %	000	711	4000	-	-	-
Mov Cap-1 Maneuver		744	1262	-	-	-
Mov Cap-2 Maneuver	380	-	-	-	-	-
Stage 1	753	-	-	-	-	-
Stage 2	641	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.8		0		0	
HCM LOS	13.0 B		U		U	
HOW LOS	D					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1262	-	421	_	-
HCM Lane V/C Ratio		0.002	_	0.026	_	-
HCM Control Delay (s)	7.9	0	13.8	_	_
HCM Lane LOS		Α.	A	В	_	_
HCM 95th %tile Q(veh	1)	0	-	0.1	_	
HOW BOTH WITH MICHAEL	1)	U	-	U. I		_